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ABSTRACT 
Conjugate Heat Transfer (CHT) analysis allows for the 

simulation of heat transfer between solid and fluid domains by 
exchanging thermal energy at the solid/fluid interfaces. This 
exchange is especially important for MPD thruster analysis due 
to the high temperature plasma (~5000K) heat transfer exchange 
between the plasma/Cathode and plasma/Anode electrode 
interfaces. Proper numerical modeling captures both the large 
electromagnetic current and magnetic field gradients, as well as, 
the heat transfer thermal gradients, that occur due to large 
thermal and electrical diffusion coefficient differences at the 
plasma/solid interface. Although MPD-CHT models are 
typically not included, attention to such numerical detail yields 
an improved MPD thruster design process and provides guidance 
to determine external heat transfer cooling requirements to 
maintain proper operating parameters. The non-linear coupled 
finite element formulation herein provides increased stability 
and presents a computational framework strategy for modeling 
and analysis of self-field and applied field MPD thrusters 
considering the highly non-linear, multi-disciplinary, and 
temperature dependent property requirements of the integrated 
solid/fluid MPD problem domain. A single numerical modeling 
design variable (OMEGA) is also introduced that combines 
experimental and numerical parameters, with reference plasma 
thermal properties. 

Keywords: MPD, CFD, Heat Transfer, Conjugate, 
Magnetoplasmadynamics, finite elements 
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REFERENCE VARIABLES

U Velocity (m s ) T Temperature (K)

Total Pressure (N m ) B Magnetic Field (wb m )
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GEOMETRY                      

R  Cathode Radius (m)    R  Anode Radius (m)     

R  Throat Radius (m)      X  Cathode Length (m)          
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1. INTRODUCTION 

The exothermic chemical propulsion exhaust velocity is 
governed by the 2nd Law of Thermodynamics which limits the 
maximum energy available from chemical reactions. The 
maximum combustion temperature is further limited by 
combustion chamber materials, and the combustion wall 
convective heat transfer rate limitation. Nevertheless, these 
limitations do not govern the use of electric propulsion 
technology which is driven by magnetoplasmadynamic (MPD) 
principles. 
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MPD principles governs the creation of a self-induced 

magnetic field when an externally applied current ( )J


passes 
through an electrical conductor. The applied current furthermore 

couples with both the “self-induced” magnetic field ( )B


 and an 

externally “applied” magnetic field ( )0B resulting in a magnetic 
force perpendicular to both the current and magnetic fields, i.e., 

.F J B= ×
  

This is known as the Lorentz thrust force, and defines 
electric MPD propulsion. 

Electric MPD propulsion has two thrust mechanisms. The 
first is the local Ohmic electromagnetic Joule heating of an 
electrically conductive ionized gas propellant to temperatures 
higher than those possible via chemical propulsion. The 
increased thermal enthalpy is thereby converted into kinetic 
energy through a nozzle as electrothermal thrust.  

The second thrust mechanism is due to perpendicular 
interactions between electric and magnetic fields, resulting in 
electromagnetic thrust in the ‘off’ direction with no moving parts 
(i.e., Electromagnetic Lorenz Forces).  

The “APPLIED-FIELD” MPD thruster requires the 
application of both an external electric field via a power source 
and the integration with an externally applied magnetic field with 
permanent magnetics encasing the acceleration chamber and 
generating thrust via the ionized gas propellant.  

In contrast, a “SELF-FIELD” MPD thruster is a low-thrust 
electric propulsion space-system that generates thrust through 
coupling between an externally applied electric field with a self-
induced magnetic field resulting in electromagnetic plasma 
acceleration.  

Although MPD propulsion thrusters are a very promising 
technology for space exploration, experimental earth-based 
facilities have pressure restrictions, and have low thrust 
efficiencies. Furthermore, despite the geometry simplicity, the 
understanding of MPD performance characteristics is limited by 
the complex 3D computational physics coupling 
electromagnetics, fluid dynamics, heat transfer, and geometric 
parameters.  Considering the high experimental cost to 
determine the impact of many flow and geometric alternatives, 
numerical methods such as finite elements perhaps is a cost 
effective strategy to obtain an in-depth understanding of complex 
MPD processes and using experimental data as a modelling 
guide. 

 
2. MPD LITERATURE  

For 60 years MPD thrusters have undergone extensive 
experimental study and development [2-4,11-21]. Although 
these early studies provided insight in MPD experimental 
operations, detailed theoretical reviews followed with access to 
improved computational resources. Lapointe [8] used a 2D 
thermal equilibrium, single fluid MHD code which incorporates 
classical plasma transport coefficients and Hall effect to predict 
steady state self-field MPD thruster performance. The code 
assumes the perfect gas equation of state, a fully ionized plasma 
gas and does include electrode sheath effects. Lapointe [11] 

further refined the calculations through separate calculations of 
ion and electron temperatures and provided more accuracy for 
the plasma voltage drop, viscous loss, and thruster efficiency. 

Xisto et al., [3] provided a 2D numerical self-field 
rectangular thruster assuming a completely ionized plasma fluid. 
However, several phenomena are neglected such as viscosity, 
thermal conductivity, electrical conductivity, incompressible, 
electrical sheath, Hall effect and radiation processes. Without 
including viscous dissipation, it is not possible to capture real 
momentum and thermal effects such as viscous drag, boundary 
layer separation, vortex shedding, and recirculation. Xisto et al., 
[4] further extended model for real gas MHD self-field thrusters 
with the Spitzer-Harm approximation for the Argon plasma 
electrical conductivity 0( )σ  and included a real gas model for 

plasma gas density and the specific heat ratio ( . . / )
p v

i e c cγ = . 
Both models also included a ‘slip’ wall boundary condition for 
velocity interfaces, and electrodes were modelled as perfect 
conductors. The ‘slip’ condition however limits the model’s 
applicability to relatively high Reynolds number flows.  

 
3. MPD THRUSTER MODEL 

Figure 1 shows a typical co-axial MPD thruster. The 
propulsion system is comprised of a central Cathode surrounded 
by a concentric Anode. As the propellant enters the chamber it is 
ionized (via an electric arc between the electrodes) within a few 
mm of the back plate. The ionization current varies between 
4,000-20,000A which results in a plasma ionization temperature 
between 2,000-10,000K. 

The propulsive energy is deposited electrically through an 
electromagnetic energy conversion mechanism that removes the 
available energy limitation of chemical thrusters and allows for 
an expanded range of exhaust velocities that governs the range 
and duration of space missions due to increased propulsion thrust 
densities.   

 
 
 
 
 
 
 
 
 
 
 
 
 
Included herein is the development of a fully coupled non-

dimensional time and temperature dependent code for modelling 
MPD thrusters using the Galerkin Finite Element Method 
(GFEM). The model includes temperature dependent property 
models for the fully ionized plasma thermal conductivity, 
viscosity, electrical conductivity, density, and specific heat 
plasma properties. The model also incorporates finite element 
‘natural’ gradient boundary conditions to accurately model 

FIGURE 1: MPD THRUSTER 
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induced magnetic field gradients (i.e., currents) as a boundary 
condition. The author is unaware of natural gradient-based 
boundary conditions within the literature for MPD simulations.  
 
3.1 MPD Assumptions 

The MPD model includes both fluid (Plasma) and Solid 
(Cathode) finite element subdomains integrated as a single 
numerical Conjugate Heat Transfer (CHT) model. This ensures 
the simulation captures temperature and magnetic field gradients 
at the plasma-solid boundary interface. The gas plasma model is 
a single, quasi-neutral fluid in thermal equilibrium with complete 
ionization upon entry. Electrical sheath formulation, Hall effects 
(impacting Ohm’s Law), displacement current (impacting 
Ampere’s Law) and radiation processes are neglected. The 
Argon plasma is considered viscous and a thermally conducting 
perfect gas. 

 
4. GALERKIN FINITE ELEMENT FORMULAION 

Herein is the development of a coupled time variant and 
temperature dependent code for modelling MPD thrusters using 
the Galerkin Finite Element Method (GFEM). The model 
includes temperature dependent properties and magnetic field 
gradient boundary conditions to accurately model the induced 
magnetic field density and heat transfer rates throughout the 
solid/plasma computational domain. 

The GFEM for numerical modeling results in an equation 
system of the form [6]:  

 
 

( )

( ) ( ) ( )[ ( ) ] 0, 1, 2,...
e

e e e
iA f N d i rφ

Ω

− Ω = =∫  (1) 

 
Where (e) is over the range for a discrete element and “r” is 

the unknow parameters over element (e) and ( )eφ  represented as: 
  

 

{ }( ) ( )

( )

( )

:

[N] = shape function matrix

f forcing function defined over element (e)

e e

e

eN

where

φ φ=

=

  

  (2) 

 
The GFEM results in the use of Gauss’s theorem for integration 
by parts over each finite element volume Ω and results for 2nd 
order derivatives are of the form: 
 

ˆ( ) ( ) 0T T TN d N n d N dφ φ φ
Γ

Ω Ω

∇ • ∇ Ω = ∇ • Γ − ∇ • ∇ Ω =∫ ∫ ∫  (3) 

 
Equation 3 has surface integral Γ  representing natural 
GRADIENT-BASED BOUNDARY CONDITIONS and is 
advantageous for modelling of MHD phenomena requiring 
magnetic field gradients as boundary conditions. 

The magnetic flux and current density gradient-based 
boundary conditions are [5]: 

 

 

0

0

ˆ ˆ 0  INSULATOR

1
ˆ ˆ ( ) 0 CONDUCTOR

1
n J n

n J n B

B

µ

µ
• = • →

= × ∇× = →

∇× =

×









 (4) 

and is accommodated by the GFEM and is assembled within the 
finite element stiffness matrix of the form [ ]{ } { }( ) ( )e eK fφ = . 

 
4.1 Source Term Modelling 

Past experimental work indicated possible issues with 
gradient driven MPD thruster instabilities [21]. Numerical MPD 
thruster modelling requires the integration of fluid mechanics, 
heat transfer, and electromagnetics through coupling of explicit 
source terms from a prior iteration based upon the gradient of 
primary solution variable such as the magnetic field density, i.e.,
B


. 
However, gradient source terms can fluctuate greatly, from 

iteration to the next, depending upon geometry gradients (i.e., 
corners), temperature dependent properties, and flow conditions. 
Due to time scale differences between the Navier-Stokes and 
Maxwells domain equations, the current density distribution can 
be large and rapidly fluctuating; this will strain the Lorentz body 
force and Joule Ohmic heating terms and resulting in elevated 
source vectors that drive the fluid system equations to become 
very large and ‘stiff [20]. Likewise, high electrical conductivity 
gradients will increase the current density and subsequently the 
source coupling vector and causing a ‘stiff” computational 
domain. This can also be an issue with integrated CHT solutions 
that include both “solid—Cathode” and a “fluid-plasma” 
interface due to large conductivity differences.  

A computational advantage of the GFEM is the inherent 
ability to assemble gradient based elemental force components 
into the local element stiffness matrix. The resulting equation set 
are recast into a strong conservative form allowing the coupling 
of Navier-Stokes, Maxwell, and Conservation of Energy 
equations, and removes the appearance of right-hand side 
explicit source terms while retaining an exact coupling to the full 
multi-physics domain equations [ ]{ } { }( ). ., 0ei e K φ = . This 
approach relieves ‘numerical stiffness’ (since no source terms are 
present), and results in improved stability. The strategy of 
replacing source coupling with flux coupling has been noted by 
several researchers [28-30], but to the authors’ knowledge the 
only implementation has been for a finite volume implicit Euler 
based Rieman solver formulation [20]. 

 
5. MAXWELL MAGNETIC INDUCTION 

MHD governs the interaction between magnetic fields and 
the interaction with an electrically conducting fluid. The 
magnetic induction equation defines the induced magnetic field 
governed by Ampere’s Law. The non-dimensional Maxwell 
electromagnetic equations ignoring electric point charges are: 
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 (5) 

 
The Curl ( )∇× of 5b and incorporating 5d and 5e provides 
the 3D Maxwell Induction Equation of the form [1]: 
 

 ( ) ( )

( )

*

* * * * * *

*

2 *

* * * * *

* * * * * * *

( ) ( )

( ) ( )

B
St U B B
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E U B

Rm

B U B U

σ

σ σ

σ

∂
+ • ∇ + ∇ ∇ • =

∂
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+ ∇ × + ∇ × × +

− ∇ • + • ∇

   
     

 

  

   


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 (6) 

with dimensionless variables defined as: 
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 (7) 

The divergence of the velocity field * *U∇ •


 allows the coupling 
of the magnetic and compressible velocity flow fields, *σ∇ is 

the electrical conductivity gradient, and terms * * *( )B∇ ∇ •


 and 
* * *( )B U•∇
 

 ensures 3D divergence free flow. As stated 
previously, gradient coupling terms are not an issue and are 
assembled directly into the GFEM finite element stiffness 
matrix.  
 
6. NAVIER-STOKES MHD COUPLING 

MHD electromagnetics and Navier-Stokes are coupled 
through the Maxwell Induction Equation and the applied current. 
The conservation of mass for compressible flow is expressed as: 

 

 
*

* * *

*
( ) 0St U

t

ρ
ρ

∂
+ ∇ • =

∂
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 (8) 

 

The conservation of momentum for compressible flow is 
expressed as: 

 
[ ]( )
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 (9) 

With dimensionless variables defined as: 
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The constitutive relations are defined as: 
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 (11) 

where *p̂ is the total hydro static and magnetic pressure, [ ]I is 

the identity matrix, and *

viscτ is the viscous stress tensor for 
compressible Newtonian flow. The momentum magnetic force 

gradient term 
* *

*

B B
Rm

Ψ
∇ × ×
 

allows coupling to the magnetic 

induction equation and is assembled within the finite element 
stiffness matrix. The conservation of energy equation is 
expressed as: 
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 (12) 
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With dimensionless variables defined as: 

 

2

0

0 0

Advective Mass Transport
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Heat Diffusion Potential

e Peclet # = Re Pr
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p

fluid p

th

U
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P
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Where ( )* *
* *B xB U∇ × •



 

is the work done by the magnetic 

thrust force on the plasma and is coupled through the magnetic 
induction and velocity flow field. The magnetic thermal load 

term ( )* *
*E B•∇ ×

 

 is the current resistivity work and couples 

the total magnetic energy to the magnetic induction equation. 
Both gradient based terms are assembled within the finite 
element stiffness matrix. 

[ / ]tE J kg is the total magnetic plasma energy for a perfect 
gas expressed as:  
 

* 2* 2
* * * * 0

0 0 0 0

1

2 2
c

t

v

U E B
E T

c T

ρ γ
ρ ρ

µ ρ
= + +  (14) 

The temperature is derived from the equation of state of the 
form: 

* 2* 2
* * 0

* 0 0 0 0

*

1

2 2
c

t

v

U E B
E

c T
T

ρ γ
ρ

µ ρ

ρ

− −

=



 (15) 

 
7. CATHODE CHT MODEL 

The Cathode CHT model includes both plasma and solid 
finite element computational domains with a common boundary. 
To ensure continuity of electric and magnetic fields, as well as 
temperature and heat flux at the plasma-solid interface, the 
temperature, thermal conductivity, and electrical conductivity 
property value are common to both the plasma and solid 
Cathode.  

Within the solid Cathode domain, a 2D property gradient 
function was developed based upon the Cathode internal 
geometry coordinates. The property value (P(u)) is defined 
according to the following parametric cubic function for both the 
axial and radial dimensions: 
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Where the eight (8) constants are determined from the following 
constraints in both coordinate directions: 
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The result provides at each internal nodal point two functions in 
terms of coordinates “X”, and “Y”. The effective property at 
each nodal point is defined as: 
 

 { } { }22( ) ( )eff x yP P u P u= +  (18) 

 
The prevailing thought is that at the molecular level the diffusion 
coefficient, thermal conductivity as an example, must adjust 
from the “solid” property value to the “plasma” property value 
as approaching the Cathode/plasma interface. At the interface an 
effective modeling strategy requires a unique property value at 
each computational nodal location. 

The above strategy allows the property change to approach 
the Cathode boundary gradually rather than a “step” change at 
the plasma/Cathode boundary interface. This property gradient 
strategy is executed after each iteration and allows for smooth 
and consistent primary variable solutions across the interface 
boundary and throughout the solid computational domain. The 
strategy ensures heat flux and magnetic flux continuity at the 
interface expressed as: 

 

 
( ) ( )

( ) ( )
ˆ ˆ

ˆ ˆ

cathode plasma

cathode plasma

q n q n

J n J n

• = •

• = •

 

   (19) 

 
The coupled finite element algorithm solves the Maxwell 

electromagnetic equations for electric current and magnetic field 
density, and the Navier-Stokes conservation equations for 
velocity, pressure, and temperature fields. This formulation is 
presented herein as the VPTB primitive variable method and 
provides a coupled plasma/solid direct solution rather than a 
typical segregated iterative approach.  

Figure 2 shows a typical result for the effective Cathode 
property distribution. The darker color near the base represents 
the larger core Cathode property value, and the lighter color near 
the Cathode tip represents the smaller property value 
approaching the Cathode/plasma interface. 
 Table 1 shows the property comparison between a typical 
ARGON GAS plasma, and a TUNGSTEN Cathode material, as 
well as the ratio between the Cathode and Argon property values. 
Note the rather large ratio for thermal and electrical conductivity 
and drives the consideration of property gradient solid domain 

F       
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models to improve accuracy and computational efficiency. This 
is of interest if anticipating large current/voltage, and thermal 
gradients near the interface and throughout the solid domain. 
 

 
 
 
 
 
 
 
 
 
 
 

 
The author is unaware of other solid property gradient efforts 
within the literature. 
 

TABLE 1: ARGON/CATHODE MATERIALS RATIO 
 
8. FINITE ELEMENT FORMULATION 

To support the general finite element practitioner, the 
coupled 2D MPD plasma variables are axial current density 

*( ( , , ))zJ z y t  and lateral current density *( ( , , )yJ z y t  

(Equation 5b), magnetic field density *( ( , , ))zB z y t (Equation 

6), pressure *( ( , , ))P z y t (Equation 8), velocity *( ( , , ))V z y t


(Equation 9), and total magnetic energy *( ( , , ))tE z y t (Equation 
12). The nine-node bi-quadrilateral finite element represents 
MPD variables at each of the nine nodes, except the pressure is 
computed at four (4) corner nodes only. The coupled global finite 
element stiffness matrix Equation 20 below is of size [68x68] 
where each of the primary variables sub matrices are of size 
[9x9] as they are computed at each of the nine nodes, except for 
sub-matrix [Kup] that is of size 9x4, [Kpu] that is of size 4x9, and 
sub-matrix [Kpp] that is of size 4x4 as pressure is only computed 
at the 4 corner nodes. Hubener [6] provides more detail regarding 
the mixed-variable u-v-p finite element formulation for velocity 
and pressure adopted here. 

Numerical integration of sub-matrices above is beyond the 
scope herein but is presented in other references, i.e., [6,7,24], 
and C-based CHAOS software is available through 
communications with the author. 
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 (20) 

 
Figure 3 shows the 9-node Bi-Quadratic parametric 

finite element used to represent coupled MPD variables. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
8.1 Temporal Discretization 

The time varying and coupled finite element MPD 
differential equations are expressed generally as [6]: 
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 (21) 

A general set of recursive relations are defined by introducing: 
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θ
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+

+

+

−
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∆
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

 (22) 

 
For a given θ combining equations 21 and 22 provide a 
recurrence relation for nodal values at the end of a time step of 
the form: 
 
 

PROP TUNGSTEN ARGON RATIO 
DENSITY 

    kg/m3 0.01563 1.8X10-4 87 

THERMAL COND 
W/m-K 110 0.2 550 

CP 
J/kg-K 200 1000 0.001 

ELECTRICAL COND 
A/V-m 2.4X106 1000 2400 

 
FIGURE 3: 9-NODE BI-QUARDATIC ELEMENT 

 FIGURE 2: EFFECTIVE CATHODE PROPERTY DISTRIBUTION 
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Where { }
1n

φ
+

are unknowns for time step n+1. For the finite 
element work herein θ =0, which is defined as the forward 
difference or Euler method for time discretization.  
 
9. EXPERIMENTAL DRIVEN NUMERICAL VARIABLES 

Non-dimensional formulations provide valuable insight into 
dimensionless parametric groups that control the system 
dynamics and response. The MPD core dimensionless groups are 
the viscous and magnetic Reynolds #, the Eckert #, and the 
Hartman #. However, these numerical parametric groups are 
NOT random and must be related to experimental operational 
parameters for real systems. The experimental parameters are 
mass flow rate (kg-s-1), current density (A-m-2), and Reference 
Temperature (K) along with geometric parameters of Cathode 
Length (X1) and radius (R1), and Anode Radius (R2). 

Another reality of dimensionless parametric groups is that 
different combinations of individual parameters within the group 
will provide the same computational result, that often is non-
intuitive. Ideally the goal is to define a “single” non dimensional 
group as the primary independent control variable, while also 
linked to experimental and numerical control variables. 

Toward this goal, define the geometric scaling factor as the 
Anode Length, X2, and reconsidering the non-
dimensionalization of the conservation of momentum equation 
right-hand-side forcing term (9):  
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With ( )OMEGAω and magnetic reference velocity defined as: 
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ω ω=  (26) 

( )OMEGAω is linked to the experimental reference current 
density (J0), reference temperature (T0), plasma electrical 
conductivity 0( )σ , and the magnetic reference velocity is linked 
toω  and the experimental Anode length (X2). 

 

From the experimental geometry and mass flow rate, ω  provides 
a single relationship between experimental and plasma 
properties and controls the following modeling parameters: 
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 (27) 

 
Similarly, the Magnetic Reynolds # (Rm) as an input parameter 
defines the Cathode Length, X1 (or vice-versa).: 
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 (28) 

 
From Equations 24-28, the numerical analysis is driven by 

experimental parameters of mass flow rate, reference current 
density, reference temperature and properties, and reference 
experimental geometry.  

Substitution for the conservation of energy equation right-
hand-side forcing term becomes:  

 

 ( )( )* * * *
* * *0( ( ))cE U

E B B xB U
Rm

ω
•∇ × + ∇ × •



   

 (29) 

 
As previously stated, these “gradient-based” forcing terms 

are included with the global finite element stiffness matrix. Note 
that for a fixed geometry, mass flow rate, reference temperature 
and plasma properties, the experimental and numerical analysis 
is controlled by a “single” variable ,ω . 

 
9.1 Argon Gas Plasma Properties 

Temperature dependent thermal property data is critical for 
all MPD numerical analysis, although challenging to retrieve 
from the literature. Argon is the selected gas plasma for the study 
herein and is perhaps the most common. Berry [1] modelled 
Argon plasma property data with a series of piecewise 
continuous parametric cubic curves per Equation 29 for density, 
viscosity, specific heat, thermal conductivity, and electrical 
conductivity, 

 
 2 3

0 0( ) 0 1.0;o oP u A B u C u D u u= + + + ≤ ≤  (30) 
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based upon published experimental data [22,23] over 
temperature range: 2500-30,000K. See [1] for complete 
coefficient values. 

For example, Figure 4 shows the Argon plasma specific heat 
variation vs. Temperature, and it is important to observe the 
inflection points impacting the conversion increase or decrease 
of thermal energy to kinetic convective acceleration or thrust. 
Complete temperature dependent ARGON property modelling 
parameters needed for MPD heat transfer simulation and design 
optimization are provided. 
 
 

 
 
10. NUMERICAL MODEL 

 MPD thruster numerical analysis including heat transfer 
represents one of the more challenging domains for 
computational fluid dynamics, and especially when attempting 
to compare with other computational models or experimental 
data. Due to domain non-linearities, gradient based forcing 
functions and boundary conditions, and temperature dependent 
thermal properties, computational formulations often differ with 
terms neglected or included simplification in wall conditions 
(i.e., slip vs no-slip), incomplete thermal properties, overlooking 
viscous/thermal diffusion, and/or inadequate geometry 
information to accurately replicate and to compare the analysis.  

To showcase the validity of GFEM algorithm we will 
compare results presented by Chelem & Groll [24] to model the 
Villani-H Thruster due the coaxial geometry simplicity. The code 
used was a “finite volume” discretization with the well-known 
PISO algorithm for magnetic pressure correction which is a 
density-based method. The code solves equations in a segregated  
approach, meaning that for each system of governing equations, 
separate matrix domain equations are solved iteratively. The 
computational domain was subdivided into 1,500,000 cells. 

The MPD geometry characteristics are shown in Figure 5 
with geometric input parameters of X1: Cathode Length, X2: 
Anode Length, X3: Domain Exit Boundary (not provided), R1: 
Cathode Radius, and R2: Anode Radius. Operating parameters 
are mass flow rate: 6 g/s, discharge current, and ionization 
temperature (not provided). 

The modeling parameters used herein for comparison are: 
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The applied discharge current for comparison is: 
 

 
2 2

9 102 10 1 10
I A s

m kg
= × − ×

 
  

 (32) 

The assumed ionization temperature of 4,000k results in the 
following plasma properties [1] shown in Table 2: 

 
TABLE 2: ARGON PLASMA PROPERTIES: 4,000K 

 
 
 
 
 
 
 
 
 

 
The specific modeling geometric and solution variables are 
provided in Table 3. 

PROP. VALUE 
cp 1358 J/kg-K 
kxx 0.19 J/kg-K 
pr 0.685 
visc 9.8E-5 Pa-s 
Sigma 583 A-m/V 
Dens 1.53E-4 kg/m3 
cp/cv 1.4 

FIGURE 5: MPD THRUSTER 

FIGURE 4: SPECIFIC HEAT TEMPERATURE MODEL 
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 TABLE 3: MODELING/SOLUTION VARIABLES 

 
 
 
 
 

 
 

 
10.1 The OMEGA FACTOR and Magnetic Thrust 

ω (Equation 25) provides a single dimensionless modeling 
parameter based upon geometry, flow, thermal properties, and 
experimental current density data. Table 4 provides the ω values 
for the comparison simulation. 

 
 

 
 
 
 
 
 

 
The magnetic thrust (Tm) is calculated for each iteration as: 
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Where the integral applies for each current carrying fluid 
element within the domain. 
 
10.2  Boundary Conditions 

The no-slip wall condition is applied for all solid/plasma 
interfaces, and all velocity components within the solid Cathode 
is set to zero. The dimensionless temperature T* is set as 1.0 at 
plasma inlet, and for the Cathode and Anode boundary surfaces.  

Regarding the magnetic field boundary conditions, the 
Cathode and Anode boundary surface is assumed to be a perfect 
conductor (Equation 4), and the lateral current (Jy) is applied as 
a gradient boundary condition at the plasma duct inlet in the 
form: 

 * 1
1 z

y

S

B
J

Rm x
d∂

= ± =
∂

Γ∫  (34) 

 
The author believes that applying current boundary conditions 
for plasma inlet flows is more appropriate since the resultant 
current flow is caused by magnetic field “gradients”, rather than 
the absolute value of the magnetic field. Once again, applying 
gradient based boundary conditions is inherent to the finite 
element method whereas with other numerical methods, such as 

finite difference and finite volumes, this capability is not 
possible.  
 
11. COMPARISON RESULTS 
Figure 6 shows a plot of Current 2 1( )A s kg− −  vs Thrust (N) and 
compares the author’s model with 5,600 9-node coupled 
parametric ‘finite element’ direct matrix solution algorithm with 
the 1,500,00-cell ‘finite volume’ segregated approach, Chelem 
[26], and also compared with the standard Macker (1955) 
electromagnetic coaxial self-field thrust model of the form: 

 

 20
ker (ln )

4
anode

Mac
cathode

rF I A
r

µ
π

 
= + 

 
 (35) 

 
Where the dimensionless constant is taken as A=0 (without 
justification).  

 
 
Although results are similar with same trends, differences 
may be expected due to: 
 
• Unable to determine reference temperature for plasma 

properties which impacts thrust. 
• Uncertain if an exit plum was included downstream, 

herein exit plum was 2X times Cathode length. 
• The plasma inlet boundary condition is different which 

also influences computational results. As opposed to a 
dimensionless current density gradient boundary 
condition ( )B∇  used herein (Equation 34), the primary 
variable Bz is applied as a boundary condition of the 
form [26]: 
 

 
0

0 2

cathode anode

I
B

r
r r r

µ

π
=

≤ ≤

 (36) 

VARIABLE VALUE 
Equations 141,307 
Elements 5,600 

Nodes 19,840 
Constraints 141,307 
CPU Sec/Itt. 492 

CURRENT 
A2-s/kg 

OMEGA 

2E+9 0.90 
4E+9 1.80 
6E+9 2.70 
8E+9 3.60 

FIGURE 6. CURRENT VS THRUST: VILLANI-H MPD 

TABLE 4. OMEGA SIMULATION DATA 
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Where “I” is the total discharge current and at the inlet the 
magnetic field boundary condition is calculated as a function of 
the current. 
 Figure 7 below shows the CONTOUR FILL plot for the 
dimensionless magnetic field, Bz(x,y) (not-to-scale). Note the 
continuous magnetic field lines at the Cathode/plasma interface, 
as well as the continuity throughout the Cathode solid elements. 
Lines of constant magnetic field also indicate the path of electric 
current flow. 
 

 
 
 
 
 
 
 

 
 
 
 
 
 
 
The ability to model both the plasma fluid elements and the solid 
Cathode within a single computational domain relative to 
determining plasma voltage potential drop from Anode to 
Cathode expressed as: 

 
B

AB y
A

V E dy∆ = −∫  (37) 

Figure 8 shows the variation of the Anode/Cathode voltage drop 
as a function of the Cathode length to Cathode radius (X1/R1) 
with a magnetic Reynolds number of 0.6 (Rm). Note that:  
 

1) The voltage potential increases with increased Cathode 
length,  

 
2) Due the assumption of a perfectly conducting Anode 

electrode (zero resistance) the voltage potential is 
constant over the core of the plasma fluid inlet and 
increases as approaching the Anode, and, 

 
3) The voltage potential decreases and approaches zero at 

the centerline as approaching the Cathode boundary as 
the Cathode is considered as a “real” material and is not 
an ideal perfect conductor. This behavior is correct as the 
Cathode centerline voltage potential must be zero. 

 
The non-inclusion of an integrated Cathode/plasma domain 
results in an ad hoc approach of adding 20V to the result of 
equation 36 [26,30]. This is advantage of an integrated 
fluid/solid model in that being able to capture real gradients at 
the interface. 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 9 shows the result of equation 37 for the Anode/Cathode 
voltage drop vs X1/R1. The voltage drop ranges from 19V to 
22V based upon the Cathode length/radius (X1/R1: 4-10).  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
These voltages compare well to Mayigue & Groll [9] at 25.27V, 
Sankaran of 30.83V [30], and Ahangar of 24.67V [31], 
considering the unknown magnetic Reynolds number which is 
an important modeling parameter. 
 
11.1 Numerical Convergence 

The stability of any numerical non-linear algorithm is based 
upon the convergence criteria and the rate of convergence. 
Herein we use the Global Residual Norm expressed as: 
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 FIGURE 7: MAGNETIC FIELD DENSITY CONTOURS 

 

FIGURE 9 : ANODE/CATHODE VOLTAGE DROP 

       
  

FIGURE 8: Cathode Voltage Drop vs. X1/R1 
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Where φ is the variable value at iteration “i”, β is defined as the 
Global Residual Norm (GRN) for all computational variables 
and “n” is the number of global variables. Figure 10 shows the  
GRN decay for two cases of Re = 1000, and 3000 with an applied 
current of 6,000 Amps and mass flow rate of 6g/s. Note the 
robust convergence for this geometry and operating conditions. 
A grid independence study was also completed by increasing the 

 

 
number elements by 30% and 60% without alterations in the 
numerical results. 
 
12. FINITE ELEMENT DESIGN SIMULATION 

Finite Element Modeling (FEM) has the primary advantage 
for engineers in providing data to compare design alternatives. 
This is especially useful for MPD design optimization studies 
due to the many different design and operating variables. The 
dimensionless MPD formulation provides insight to parameters 
that control and govern overall performance. Here we provide 
data with a fixed mass flow rate (6 g/s), Reynolds No. (230), and 
ionization temperature (4,000K). Figure 11 shows the Magnetic 
Thrust (equation 33) variation as a function of Rm (0.2-0.8) and 
Cathode length/radius ratio (4-14). Observe that for any fixed 
value of Rm the magnetic thrust variation is slightly quadratic 
with increasing Cathode length with a fixed Cathode radius. 
 
 
 
 
 
 
 
 
 
 
 
 
 

Note the strong importance of Rm (magnetic 
convection/magnetic diffusion) relative to operating 
performance and thrust generation. For any fixed value of 
Cathode/radius length ratio, the magnetic thrust various 
approximately linearly with Rm.  

The magnetic flow efficiency based upon the magnetic 
thrust (33) is defined as: 
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 (39) 

 
The magnetic flow efficiency is a measure of the magnetic 
conversion efficiency from the input electrical power to the 
production of magnetic thrust. It is not the total thrust due to the 
increase of the plasma exit momentum which is the sum of the 
magnetic conversion thrust and the thermal conversion thrust. 
 Figure 12 shows the magnetic flow efficiency vs. Rm 
and Cathode length/radius ratio. Note that flow efficiency 
increases slightly in a quadratic manner with both the Cathode 
length and Rm. Depending upon the value of Rm and the 
Cathode length ratio, the magnetic flow efficiency is shown as 
high as 30%. 
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FIGURE 12: FLOW EFFICIENCY VS RM 

 

FIGURE 10: RESIDUAL NORM VS. ITTERATION 

FIGURE 11: THRUST VS MAGNETIC REYNOLDS NO. 
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To understand the rational for the impact of Cathode length ratio 
on thrust, Figure 13 shows the lateral current density along the 
length of the Anode at Rm = 0.6. Note that for a longer Cathode 
there is a higher value of current density (A/m2) for any location 
along the Anode surface. Of course, all values are the same at the 
entry of the MPD thruster and gradually decrease to near zero at 
the exit plane. The difference is the rate of current density 
decrease from inlet to exit. Similar results are duplicated at 
different values of Rm.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
12.1 Heat Transfer Distribution 
Figure 14 shows the general temperature distribution for the case 
of Rm = 0.2, 21,000 Amps, 75x109 A2-s/g, and X1/R1 = 10. The 
plasma enters at 4,000k and with a 100% ionization, and 
increases to about 5,572K at the Cathode tip with a Cathode base 
temperature of 4,400K. Note the slight magnetic cooling at the 
inlet, the solid Cathode temperature gradients from the base to 
the Cathode tip, and the temperature cooling along the thruster 
axis from the Cathode tip to the thruster exit.  
 
 

 
 
 
 
Figure 15 shows the variation of velocity, temperature, and 

viscosity along the thruster axis, from tip to exit. For this case 
the temperature as a maximum at the Cathode tip and loses heat 
to the Anode boundary with a fixed temperature boundary 
condition equal to the plasma inlet temperature. Along the axis, 
as the temperature decreases so does the viscosity which is 
temperature dependent. Thus, a decreasing viscosity results in a 
decreased viscous diffusion associated with an increased in 
convective velocity, i.e., acceleration along the axis.  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 16 shows the Argon plasma Viscosity-Temperature 
deployed for the MPD model [1]. Note the inflection at around 
10,000K. A design consideration should be a maximum 
temperature of 10,000K in the vicinity of the Cathode tip, with 
an expected decrease of temperature and viscosity along the 
thruster axis. Due to the Argon plasma viscosity variation, the 
heat transfer from the Cathode to the Anode along the axis will 
result in thermal acceleration due to reduced viscous diffusion.  
   

 
 
 
 

 

FIGURE 13: ANODE LATERAL CURRENT VS X1/R1 

 

FIGURE 14: BASE TEMPERATURE DISTRIBUTION 

 

FIGURE 15: AXIAL VELOCITY, TEMPERATURE AND VISCOSITY. 

FIGURE 16: ARGON VISCOSITY VS TEMPERATURE 
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12.2 Anode Heat Flux 
The Anode electrode should be maintained at a reduced 

temperature lower than the Cathode electrode tip to facilitate 
thruster axial thermal cooling and increased thermal thrust. 
Figure 17 shows the transverse heat flux along the Anode 
surface. Note the large heat flux increase a short distance from 
the plasma inlet.  

As the Anode surface temperature has a specified 
temperature boundary condition the same as the plasma inlet 
temperature, it is necessary to determine the Anode cooling heat 
transfer rate based upon the value of Rm and the applied current 
from the following: 
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For the specified conditions, the Anode heat transfer flux to 

maintain the Anode wall temperature is 
2

4, 056

cathode

W

A m
 
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. The 

Anode heat transfer flux varies with Rm, plasma mass flow rate, 
ionization temperature, geometry, and applied current.  

The inclusion of the Cathode solid as a “real” material 
is necessary to ensure an appropriate heat transfer mechanisms 
for plasma cooling and temperature management. A large 
Cathode/plasma thermal conductivity difference contributes to 
internal heat sinks that balances the plasma heat sources and 
dampens thermal oscillations leading to stable numerical 
conversions during the ‘modelling’ process.  

Figure 18 shows the “heat transfer” direction scaled by 
Temperature values. Note that within an area downstream of the 
Cathode boundary due to higher plasma temperatures, there is 
convective heat transfer downstream, heat transfer to the outer 
Anode boundary due to a lower temperature and to the inner 

Cathode boundary due to a higher thermal conductivity and a 
lower temperature. This detail is typically not provided. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
This convective/conductive solid/plasma heat transfer process 
between the plasma fluid and the Cathode solid should be 
included within the finite element model to capture the 
interconnectivity between fluid mechanics, heat transfer, and 
electromagnetics. 
 
13. CATHODE CURRENTS & ENERGY DISSIPATION 

Figure 19 shows the Cathode dimensionless axial current 

distribution * * *1
( )xJ xB

Rm
= ∇  as a function of the Cathode 

magnetic Reynolds number. The plasma magnetic Reynolds 
number is constant at Rm = 0.10. As a “solid” finite element 
domain element, the relative magnitudes of the magnetic 
Reynolds number impacts both the axial Cathode current 
flow and the energy dissipation within that Cathode. 
Observe that for a Cathode Rmc = 100, the base axial current 
is higher than a Cathode Rmc = 600. This may not be 
obvious since a higher Rm indicates a higher electrical 
conductivity, but also a lower “electrical resistivity”. 
 
 
 

  

 

FIGURE 17: ANODE HEAT FLUX VS DISTANCE 

FIGURE 18: PLASMA HEAT TRANSFER VECTORS 

 

FIGURE 19: AXAL CATHODE CURRENT VS. RM 



 14 © 2021 by ASME 

Note the relatively constant Cathode axial current distribution 
with increasing values of Rmc (100-600). Numerically, this 
behavior indicates a computational insensitivity to the ratio of 
plasma/Cathode magnetic Reynolds number, and we theorize 
that Cathode materials with a higher electrical conductivity 
(lower electrical resistivity) also serves to damped plasma 
fluctuations and improves computational efficiency, i.e., acts as 
a current ‘sink’, and provides increased stability. 

A higher electrical resistivity (lower Conductivity) 
results in an increased resistive power deposited into the 

Cathode, i.e.
2

0, [ ].
I

W
σ

Figure 20 shows the Cathode axial 

resistive power (W/m) (absorption rate) which impacts the 
resulting Cathode temperature distribution and the heat transfer 
necessary to maintain the Cathode base surface temperature (T0). 
Note that a lower Magnetic Reynolds No. (higher resistivity) 
results in a higher Cathode energy absorption rate, than a higher 
Magnetic Reynolds No. (lower resistivity). 

 
 
14. CONCLUSION 

The finite element method represents a valuable MPD 
design tool for comparing multiple geometric variations 
combined with proper boundary conditions and material 
properties. The approach herein presented a Conjugate Heat 
Transfer model for coupling the solid Cathode/Anode elements 
with the high temperature fluid plasma and combined with the 
capability to include gradient-based forcing terms and boundary 
conditions within the finite element stiffness matrix. The 
completely coupled direct matrix formulation deploys a “wave 
front” matrix solver operating on a REDHAT LINUX 
microcomputer with an INTEL P4 Processor. 

The dimensionless 2D finite element MPD computational 
technology methods here provide the foundation for the analysis 
of both applied and self-field thrusters and is the basis of the 
CHAOS 2D transient and compressible single temperature 
plasma code with temperature dependent properties, integrated 
solid/fluid elements, gradient based loadings and with coupled 

output variables that include velocity, pressure, temperature, heat 
flux, and current, electric, and magnetic field density. 

The OMEGA design factor , ,ω  a single variable MPD 
modeling feature was introduced. This strategy allows the 
classifying of MPD thrusters based upon variables

0
2
0 2( , , , , , ., , )I Ec Rm m and Tm Xω   
The model leverages the inherent Galerkin finite element 

ability to include primary variable gradient-based load terms 
without difficulty, to naturally include the interface linkage terms 
from the conservation laws for mass, momentum, energy, and 
electromagnetics. These interface linkage terms couple the 
various interdisciplinary computational domains that are 
inherently gradient based. 

Finally, a consideration for the inclusion of solid elements 
within thermal and magnetic fluid dynamics problems is due to 
large differences between thermal and electrical conductivity 
property values. The solid domain represents an energy buffer to 
absorb random thermal and magnetic flow fluctuations and 
results in a stable system convergence behavior. 
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