BASIC DERIVATIVE \& INTEGRAL RELATIONS

Math is the language of engineers and scientist

ENGINEERING PRODUCT DEVELOPMENT

- Developing engineering solutions to improve mankind using applied math for idea creation, idea analysis, product development and testing, and product realization.

Basic Derivatives/Integrals

$$
\begin{aligned}
& \frac{d}{d x}(\sin a x)=\cos (a x) \frac{d}{d x}(a x), \quad \frac{d}{d x}(\cos a x)=-\sin (a x) \frac{d}{d x}(a x) \\
& \int \sin (a x) d x=\frac{-\cos (a x)}{\frac{d}{d x}(a x)}+C, \quad \int \cos (a x) d x=\frac{\sin (a x)}{\frac{d}{d x}(a x)}+C \\
& \frac{d}{d x}\left(e^{a x}\right)=e^{a x} \frac{d}{d x}(a x), \quad \int e^{a x} d x=\frac{e^{a x}}{\frac{d}{d x}(a x)}+C
\end{aligned}
$$

$$
\int e^{a x} \sin b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \sin b x-b \cos b x]+c
$$

$$
\int e^{a x} \cos b x d x=\frac{e^{a x}}{a^{2}+b^{2}}[a \cos b x+b \sin b x]+c
$$

> "a" and "b" are the ODE equation constants "c" is the arbitrary constant of integration

GENERAL SOLUTION $1^{\text {ST }}$ ORDER PDE

$$
\frac{d y}{d x}+p(x) y=f(x)
$$

HAS GENRAL SOLUTION OF:

$$
\begin{aligned}
y(x) & =C e^{-\int p(x) d x}+e^{-\int p(x) d x} \int e^{\int+p(x) d x} f(x) d x \\
C & \equiv \text { Arbitrary Constant of Integration Obtained }
\end{aligned}
$$

From Initial Condition $\mathrm{y}(\mathrm{x}=0)=\mathrm{Y}_{0} \rightarrow C$

$$
\begin{aligned}
& \text { SPECIAL CASE: } \mathrm{p}(\mathrm{x})=0 \\
& \qquad \begin{array}{r}
\mathrm{y}(\mathrm{x})=\mathrm{C}+\int f(x) d x \\
\text { SPECIAL CASE: } \mathrm{f}(\mathrm{x})=0 \\
\mathrm{y}(\mathrm{x})=\mathrm{C} e^{-\int p(x) d x}
\end{array}
\end{aligned}
$$

