

Bernoulli \& Manometer

- Air flows steady and frictionless as shown. If flowrate is large enough, the pressure in the constriction will be low enough to draw water into the tube. Determine the volume flow rate Q and the inlet pressure requirements.

CRITICAL STEP \#1

- What fundamentals are important?
- Bernoulli (Fluid Flow)
- Mass Conservation (Diameter Change)
- Manometry (Hydro Statics)
- Provides Pressure Differential

Important to identify points:

- Inlet/Exit (1/3)
- Static Pressure Points (2)

- Manometer Fluid Interfaces (4)

Step \#2

- Apply Manometry First To Identify Knowns and Unknowns.
- Be Consistent

Step 3

$$
\begin{aligned}
& 2-3 \\
& Z_{z}=z_{3} \\
& \frac{P_{2}}{\gamma_{\text {air }}}+\frac{V_{2}^{2}}{2 g}=\frac{P_{3}}{\gamma_{\text {air }}}+\frac{V_{3}^{2}}{2 g}, P_{3}=0 \rightarrow \text { FREE JET } \\
& \text { Mass Conservation } \\
& V_{2}=\frac{A_{3} V_{3}}{A_{2}}=\left(\frac{50}{25}\right)^{2} V_{2}=4 V_{3} \\
& \frac{V_{2}^{2}}{2 g}-\frac{V_{3}^{2}}{2 g}=-\frac{P_{2}}{\gamma_{\text {air }}} \\
& \frac{V_{3}^{2}}{2 g}(16-1)=-\frac{P_{2}}{\gamma_{\text {air }}} \\
& V_{3}=\sqrt{\frac{-\frac{P_{2}}{\gamma_{\text {air }}} \bullet 2 g}{15}} \\
& N o w, \frac{\mathrm{P}_{2}}{\gamma_{\text {air }}}=-\frac{2940 P a\left(\mathrm{~N} / \mathrm{m}^{2}\right)}{12 \mathrm{~N} / \mathrm{m}^{3}} \\
& V_{3}=-245 \mathrm{~m} \\
& \frac{245 m \bullet 2 \bullet 9.81 \mathrm{~m} / \mathrm{s}^{2}}{15}
\end{aligned} \sqrt{320.41 \frac{\mathrm{~m}^{2}}{\mathrm{~s}^{2}}}=17.9 \frac{\mathrm{~m}}{\mathrm{~s}} .
$$

Step 4

- Solve for other unknown velocities and pressures

$$
\begin{aligned}
& Q=A_{1} V_{1}=A_{2} V_{2}=A_{3} V_{3} \\
& V_{2}=\frac{Q}{A_{2}}=71.5 \mathrm{~m} / \mathrm{s}
\end{aligned}
$$

$V_{1}=\frac{Q}{A_{1}}=17.9 \mathrm{~m} / \mathrm{s}=V_{3} \rightarrow$ Constant Diameter Pipe
1-2

$$
\frac{P_{1}}{\gamma_{a i r}}+\frac{V_{1}^{2}}{2 g}=\frac{P_{2}}{\gamma_{a i r}}+\frac{V_{2}^{2}}{2 g}
$$

$$
\begin{aligned}
& P_{1}=\left(\frac{P_{2}}{\gamma_{a i r}}+\frac{V_{2}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}\right) \gamma_{a i r} \\
& P_{1}=\left(-245+\frac{1}{2 g}\left(71.5^{2}-17.9^{2}\right)\right) \gamma_{a i r} \\
& P_{1}=(-245+245) \gamma_{a i r} \\
& P_{1}=0 \\
& 1-3, \text { OR ALTERNATIVE METHOD }
\end{aligned}
$$

$$
\begin{aligned}
& \frac{P_{1}}{\gamma_{a i r}}+\frac{V_{1}^{2}}{2 g}=\frac{P_{p}}{\not P_{a i r}}+\frac{V_{3}^{2}}{2 g} \\
& \frac{P_{1}}{\gamma_{a i r}}=\frac{V_{3}^{2}}{2 g}-\frac{V_{1}^{2}}{2 g}=0
\end{aligned}
$$

