
MECH-420
Heat Transfer
Chapters 6-8
Introduction to Convective Transfer – External/Internal Flow

How the heck do we find “h”?
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ENGINEERING STUDENT MISPERCEPTIONS
(CLICK HERE)
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https://www.youtube.com/watch?v=iiSztDEcpXE&list=PL-hRFIENVwZwFbXW_Uth_mgG1bkt3p4UM&index=1


GOAL !!!!!!!

FIND CONVECTIVE HEAT 
TRANSFER COEFFICIENT h= ?

FIND DRAG COEFFICIENT cf=?
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Heat Transfer Modes

 Conduction: Energy transfer due to molecular 
interactions caused by temperature.

 Radiation: Energy transfer due to propagation of 
electromagnetic waves/photons due to surface 
temperature.

 Convection: Energy transfer due to bulk fluid 
motion and temperature difference between fluid 
and surface.

 Boiling and Condensation: If the fluid is being 
transformed from liquid to vapor through heat 
addition, then the process is  boiling or 
evaporation. If vapor is being transformed to liquid 
by heat removal, then the process is condensation. 
... The density difference between a vapor and a 
liquid is quite large. 5/31/2022
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Forced Convection

 Convection: Describes energy transfer between a surface 
and a fluid moving over the surface at a different 
temperature.

 Because the surface velocity is zero and the surface 
temperature is different than the fluid temperature, the 
result is the development of velocity and thermal 
“boundary layers” close to the surface shown here. 

 The transfer of momentum and energy occurs within these 
boundary layers.

 Local heat flux may be expressed as:
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Since the flow and thermal conditions vary from point to point,
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Total Heat Transfer Rate

 Since flow conditions change along surface, the total heat transfer rate is 
expressed as:

 Heat flux requires the determination of the HT coefficient.
 HT Coefficient is a function of numerous fluid properties such as density, 

viscosity, thermal conductivity and specific heat, and, depend upon the 
surface geometry and flow conditions.

 This dependency is a result of boundary layers that develop on the surface.
5/31/2022
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Convective Boundary Layers

 The velocity boundary layers (BL), where:

 When fluid particles make contact with the surface, they assume zero 
velocity. These particles act to retard the motion of particles in the 
adjoining fluid layer and so on…

 This retardation of fluid motion is associated with the shear stress,

 Due to BL growth, the fluid flow is characterized by two distinct regions:
 1. A thin fluid layer (the boundary layer) where velocity gradients and shear 

stress are large. BL is a result of fluid VISCOSITY which causes a shear stress at the 
wall.
 BL growth (thickness) increases with increasing “X” from the leading edge.

 2. A region outside the BL where velocity gradients and shear stresses are small 
(Potential Flow)

 The effects of viscosity penetrates further into free stream as BL grows. 5/31/2022
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( ) velocity distribution in boundary layer
(y) = boundary layer thickness, where u(y)=0.99u
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Velocity BL Relationships
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Thermal Boundary Layers

 A Thermal Boundary Layer (TBL) “MUST” develop if the fluid free stream 
and the surface temperature are different. 

 Due to temperature difference between surface and fluid, the particles in 
contact with plate achieve thermal equilibrium, and transfer energy to 
particles in adjoining fluid layers, and so on throughout the thermal BL. 

 This results in a temperature gradient in the fluid. With increasing distance 
from the leading edge, the effects of HT penetrate further into the free 
stream as the thermal BL grows. 5/31/2022
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( ) BL Temperature Distribution
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Thermal BL Relationships
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KEY IDEAS!!!

 Conditions in the THERMAL BL determines the rate of HT (q(x)) across the BL, i.e.: 

 Since (Ts-Tf) is constant, temperature gradient in BL MUST decrease with increasing X.

 i.e.                     DECREASES WITH INCREASING X, Q(X) AND H(X) DECREASES WITH INCREASING X.

 The KEY BL parameters are FRICTION COEFFICIENT AND HEAT TRANSFER COEFFICIENT.

5/31/2022
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Navier Stokes
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NO SOLUTION POSSIBLE FOR 50+ YEARS

Conservation of Mass, Momentum, and Energy –
Navier Stokes Equations



Free/Natural Convective Heat Transfer
Concentric cylinders
 The Power of Numerical Methods: Temperature Contours

 Conservation of Mass, Momentum, and Energy – Navier Stokes 
Equations

K. J. Berry-Week 9
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Numerical: Dr. K. J. Berry Experimental



Forced Convection Lid Cavity Flow

5/31/2022
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Dr. K. J. Berry



Week 6
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MAGNETOPLASMADYNAMICS + Heat and Fluid Flow, 
CHAOS: Computational MHD Analysis

Conservation of Mass, Momentum, Energy, & Maxwell 
Electromagnetics, Navier Stokes Equations
Conducting fluids passing through electric fields induce magnetic fields that couple with 
electric currents to produce electromagnetic THRUST force.

ENGINEERING

PHYSICS

MATHEMATICS

+

+



Week 6
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∂
=
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T = 1.0

Magnetoplasmadynamics Heat and Fluid 
Flow, CHAOS: Computational MHD Analysis

Conservation of Mass, Momentum, Energy, & Maxwell 
Electromagnetics, Navier Stokes Equations

Dr. K. J. Berry

Conducting fluids passing through electric fields induce magnetic fields that couple with 
electric currents to produce electromagnetic THRUST force.



PLASMA
CLICK HERE

5/31/2022
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https://www.youtube.com/watch?v=94tReSbyPYc


FUSION ENERGY
(CLICK HERE)
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https://www.youtube.com/watch?v=k3zcmP
mW6dE

)150,0
F
00,
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L26

HEAT TRANSER
 (HELIUM CHIL E0 9 RC C−→

https://www.youtube.com/watch?v=k3zcmPmW6dE
https://www.youtube.com/watch?v=k3zcmPmW6dE
https://www.youtube.com/watch?v=ekub_xEiUww
https://www.youtube.com/watch?v=k3zcmPmW6dE
https://www.youtube.com/watch?v=k3zcmPmW6dE
https://www.youtube.com/watch?v=ekub_xEiUww
https://www.youtube.com/watch?v=k3zcmPmW6dE
https://www.youtube.com/watch?v=k3zcmPmW6dE


External Forced Convection—FLAT PLATE
FRICTION RELATIONSHIPS
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Heat Transfer Relations – Flat Plate
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Heat Transfer During Boundary Layer Growth
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Heat Transfer Larger at 
Leading Plate Edge
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Problem 7.21:  Preferred ORIENTATION (corresponding to HIGHER HEAT 
LOSS) and the corresponding HEAT RATE for a surface with adjoining 
SMOOTH and ROUGHENED sections.

SMOOTH ROUGH

Rough Plate (B) can “TRIP” 
TURBULENT Boundary at Start.



ROAD MAP
Configuration #1
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THOUGHT #1:  What is the FLOW CONDITION @ END

SCHEMATIC:   

 



FLOW CONDITION @ END
Laminar vs Turbulent vs MIXED
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PROPERTIES:  Table A-4, Air (Tf = 333K, 1 atm):  ν = 19.2 × 10-6 m2/s, k = 28.7 × 10-3 
W/m⋅K, Pr = 0.7. 
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PROPERTIES:  Table A-4, Air (Tf = 333K, 1 atm):  ( = 19.2 ( 10-6 m2/s, k = 28.7 ( 10-3 W/m(K, Pr = 0.7.




CASE 1: LAMINAR + TURBULENT PLATE
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CASE 2: TURBULENT @ START
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THEORY COMPLETE!!!

EQUATIONS COMPLETE!!!

( , , , Pr, ) ( )s sq h u T T A T Tµ∞ ∞ ∞= −



28

An array of 10 silicon chips of Length L = 10mm on a side, is insulated on
one surface and cooled on th other by air in parallel at 24C at 40 m/s. When in use
, the same electrical power is dissipated in each chip, maintaining a uniform heat flux.
If the temperature of each chip may not eceed 80C, what is the maximum allowable power
per chip? What is the a turbulence promotor is use to trip the boundary layer? What about
orientation normal, rather than parallel to the flow?

80sT C≤

40 /
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Assumptions: Steady-State, Neglect Radiation, No Heat Loss via Insulation, Uniform Heat Flux



PROPERTIES
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ANALYSIS
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TURBULENT BOUNDARY LAYER AT START
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Convection 
Cooling of 
Steel Plate in 
Parallel Flow 
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Find:
1. Initial rate of 
Heat Transfer

2. Initial rate of 
change of Plate 
Temperature.
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SOLUTION STEPS
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-No Radiation
-No Effect of Velocity on BL Growth
-Isothermal
-No Edge Heat Transfer
-Constant Properties
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LUMPED or SPATIAL
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Cylinder in Cross Flow

 Another common external flow involves fluid 
motion normal to  the axis of a circular cylinder 
as shown.

 The free stream is brought to rest at the forward 
stagnation point, with a rise in pressure.

 From this point the pressure decreases with 
increasing “x”, and the boundary layer 
develops under the influence of a favorable 
pressure gradient (dp/dx<0).

 However, the pressure must reach a minimum, 
and toward the rear of the cylinder, further BL 
development occurs in the presence of an 
adverse pressure gradient (dpdx >0).

 At some point the boundary layer separates 
and resulting in reversed flow.
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Relations--
DRAG

 Drag Coefficient
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FLUID/SOLID 
CONVECTIVE HEAT 
TRANSFER
“REAL SOLUTIONS”



Navier Stokes
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NO SOLUTION POSSIBLE FOR 50+ YEARS

Conservation of Mass, Momentum, and Energy –
Navier Stokes Equations



2D Flow: Finite Element Mesh
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2D Flow Sphere: TEMPERATURE
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CONVECTIVE 
COOLING



2D Flow Sphere: PRESSURE
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HIGH PRESSURE

LOW PRESSURE

Boundary 
LAYER 
Separation



2D Flow Sphere: Re=150 
VELOCITY UX
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UX ACCELERATION

UX LOW SPEED
SEPARATION



2D Flow: Vectors w/Temperature
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RE-CIRCULATION
BL SEPARATION



2D Flow: UX Contour Line
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NEGATIVE REVERSE 
UX FLOW
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Relations—Cylinder Heat Transfer

 Heat Transfer
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SPHERE in Cross Flow
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Cylinder in Cross Flow. Find Drag 
Force & Heat Transfer per Unit Length
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DRAG FORCE
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HEAT TRANSFER
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Sphere in Cross Flow. Find Drag Force 
and Heat Rate.
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DRAG FORCE
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HEAT RATE
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For enclosed cylindrical heater below exposed to cross 
flow at initial temperature Ti, find steady state temperature, 
and time to come to 10C of steady state temperature.
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STEADY STATE TEMPERATURE
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CHECK Ts GUESS Validity
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Time to Reach Ts-10K= 625K
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LUMPED ANALYSIS
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Find the CENTER
Temperature of the 
Cylindrical Heater?

61

5/31/2022



Air passes over area at 127C with 0.5W removed. 
To increase heat transfer a steel pin fin is affixed. 
Find max possible heat removal and fin 
effectiveness.
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Solution: MAX POSSIBLE HEAT REMOVAL
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Max Heat w/FIN ARRAY
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HOMEWORK
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7.1,2,8,9,20,35,44,
47,49,54,74,76,79



Sphere initially at 25C large furnace as shown.
1. Find Steady State Temperature.
2. Plot T(t) and q(t) for 0-300 sec ignoring radiation.
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Transient Solution
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LUMPED TRANSIENT
NO RADIATION
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THOUGHT?

How would 
analysis be 
updated if sphere 
was incased within 
4mm of ANSI 316 
steel?

Hmm???
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INTERNAL FLOW
CHAPTER 8

 When fluid enter tube with uniform velocity, the fluid makes 
contact with the surface and viscous effects become 
important. 

 A boundary layer develops with increasing X. 

 This development occurs at the expense of a shrinking inviscid 
flow region and concludes with velocity/thermal boundary 
layer merger at the centerline. 

 Following this merger, viscous effects extend over the entire 
cross section.

 The velocity/thermal profile NO LONGER changes with 
increasing X. This is called FULLY DEVELOPED FLOW (x/D>10).

 The distance from the entry for full developed flow is denoted 
as X,fd, and the velocity is parabolic. 

 For TURBULENT flow, the profile is “FLATTER” due to turbulent 
mixing in the radial direction. 

 The heat transfer coefficient (h) decreases from a maximum 
at the inlet to a constant value for FULLY DEVELOPED FLOW. 
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Hydrodynamic Considerations
Fully Developed Flow
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Thermal Considerations
Fully Developed Flow
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Thermal Considerations
HEAT TRANSFER
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Heat Transfer
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NUSSELT Number
Fully Developed Flow
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Known temperature and mean velocity 
through duct. Find PRESSURE DROP.
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SOLUTION
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Find pressure drop, flow work, temperature 
rise.
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Despite the long pipe, high 
viscosity, and large DP, DT is quite 
small.



Find oil outlet temperature and total 
heat transfer rate.
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SOLUTION
Constant Temperature DUCT
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EXIT TEMPERATURE
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HOMEWORK
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8.60,61,62,65,68,71,72



Convective 
Heating by Air 
at 10m/s and 
100C in Cross 
Flow

85
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Find “mean” water exit temperature 
for two cases for THIN WALL TUBE.
A)Constant surface temperature, 
Ts=27C (cooling).
B)External Air at 10m/s and 100C 
(heating)

86
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SOLUTION PROCESS ROAD MAP
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1. Guess Tmean
2. Get Properties
3. Compute Actual Tmean
4. Compare to Initial Guess
5. Adjust Properties (if necessary) Based Upon New Tmean
6. Repeat Analysis if "BIG" Change in Properties ( 30%)±



PROPERTIES
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Internal Duct Flow w/Constant 
SURFACE Temperature
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Nusselet #
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SOLUTION, Tm,o
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CASE B
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SPECIAL CASE
INTERNAL PIPE FLOW/EXTERNAL CONVECTION

 In some applications, the 
temperature of the external fluid, 
rather than the  surface temperature 
is FIXED.

 If so, we can define the Heat flow as 
follows:
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SOLUTION
(special case)
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EXTRENAL CYLINDER CROSS FLOW
HEATING (THIS CASE: THIN WALL TUBE)
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Constant Temperature Special Case –
EXTERNAL CROSS FLOW
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GENERAL THERMAL RESISTANCES
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Hot fluid enters this wall tube at 85C and is in cross 
flow with air at 25C as shown. Find outlet mean 
temperature if flow rate is increased by 2.
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FIRST FIND UA (GIVEN EXIT TEMP)
OVERALL THERMAL RESISTANCE
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INTERNAL CONVECTIVE HEAT TRANSFER 
COEFFICIENT, hi.
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NEW EXIT TEMPERATURE
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NOTE: FASTER FLOW RATE LEADS TO HIGHER OUTLET TEMPERATURE ????



THOUGHT?

How would 
analysis be 
updated if 
CYLINDER had wall 
thickness of 4mm of 
ANSI 316 steel?

Hmm???
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