

Compressible Flow

Mach Number:

$M=\underline{V}$
 C

$c=\sqrt{k R T} ; \quad \mathrm{R}=$ Ideal gas constant (for air, $\mathrm{R}=287 \mathrm{~N} . \mathrm{m} / \mathrm{kgK}$)
$\mathrm{M}<0.3$ incompressible flow
$M<\mathbf{1 . 0}$ subsonic flow
M@1.0 transonic flow
$M=\mathbf{1 . 0}$ sonic flow
$M>1.0$ supersonic flow
M > 3.0 hypersonic flow

Class 18: Compressible Flow - Ideal gas law

Ideal/Perfect Gas Law (equation of state for an ideal gas):

Changes in gas density directly related to changes in pressure and temperature through the equation

$$
p=\rho R T
$$

,p is the pressure, ρ is the density, T is the absolute temperature and R is a gas constant.

Mass flow rate:

$$
\dot{m}=\rho A V=\frac{P}{R T} A V
$$

$$
\Rightarrow \dot{m}=\frac{P}{R T} A * M * C=\frac{P}{R T} A * M * \sqrt{k R T}=P * A * M * \sqrt{\frac{k}{R T}}
$$

Class 18: Compressible Flow - Example

Example: Air at Mach 1.25 passes through a circular channel 10 cm in diameter. The static pressure and temperature are 100 kpa and $30^{\circ} \mathrm{C}$ respectively. Find the mass flow rate.

Solution: The mass flow rate can be calculated as
$\dot{m}=\rho A V=\frac{P}{R T} A V=P * A * M * \sqrt{\frac{k}{R T}}$
$\Rightarrow \dot{m}=100 \mathrm{kPka} \times\left(\frac{\left(10^{3} \mathrm{~N} / \mathrm{m}^{3}\right)}{1 \mathrm{kPa}}\right) \times \frac{\pi}{4}(0.01 \mathrm{~m})^{2} \times 1.25 \sqrt{\frac{1.4}{\left(287 \mathrm{~N} . \mathrm{m} / \mathrm{kg}^{o} \mathrm{~K}\right)(273+30)^{\circ} \mathrm{K}}}$
$\Rightarrow \dot{m}=3.93 \frac{\mathrm{~kg}}{\mathrm{~s}}$

Class 18: Compressible Flow - different processes

- Adiabatic Process

An adiabatic process is one in which no heat is gained or lost by the system. The first law of thermodynamics with $Q=0$ shows that all the change in internal energy is in the form of work done. This puts a constraint on the heat engine process leading to the adiabatic condition. This condition can be used to derive the expression for the work done during an adiabatic process.
$P V^{k}=$ constant $=C ; \mathrm{k}=\mathrm{C}_{\mathrm{p}} / \mathrm{C}_{\mathrm{V}}$ ratio of specific heats.

- Reversible process

A reversible process is a process that, after it has taken place, can be reversed and causes no change in either the system or its surroundings.

- Isentropic flow

An isentropic flow is a flow that is both adiabatic and reversible. That is, no energy is added to the flow, and no energy losses occur due to friction or dissipative effects.

Class 18: Compressible Flow - different processes

Relationship between temperature, density and pressure for the isentropic flow of an ideal gas:

$$
\begin{aligned}
& \left(\frac{T}{T_{0}}\right)^{k / k-1}=\left(\frac{\rho}{\rho_{0}}\right)^{k}=\left(\frac{p}{p_{0}}\right) \\
& \Rightarrow \frac{p}{\rho^{k}}=\text { constant }
\end{aligned}
$$

For isentropic flow:

$$
c=\sqrt{\left(\frac{d p}{d \rho}\right)_{s}}=\text { speed of sound }
$$

Class 18: Compressible Flow \longrightarrow Converging-Diverging Nozzle

Experiment: Converging-diverging nozzle

Subsonic \longrightarrow Sonic \longrightarrow Supersonic Flow

Class 18: Effect of Variations in Flow Cross-sectional Area

Newtons $2^{\text {nd }}$ law applied to the inviscid and steady flow (Bernoulli):

$$
\begin{aligned}
& d p+1 / 2 \rho d\left(V^{2}\right)+\gamma d z=0 \\
& \Rightarrow d p+1 / 2 \rho d\left(V^{2}\right)=0 ; \text { for ideal gas P. E. term dropped }
\end{aligned}
$$

$$
\Rightarrow \frac{d p}{\rho V^{2}}=-\frac{d V}{V}
$$

$$
\dot{m}=\rho A V=\text { constant }
$$

$$
\begin{aligned}
& c=\sqrt{\left(\frac{d p}{d \rho}\right)} ; \mathbf{M}=\frac{\mathrm{V}}{\mathrm{c}} \\
& c^{2}=\left(\frac{d p}{d \rho}\right)=\frac{\mathrm{V}^{2}}{M^{2}} ; \text { or }
\end{aligned}
$$

$$
\Rightarrow \ln \rho+\ln \mathrm{A}+\ln \mathrm{V}=0
$$

$$
\Rightarrow \frac{d \rho}{\rho}+\frac{d A}{A}+\frac{d V}{V}=0
$$

$$
\Rightarrow-\frac{d V}{V}=\frac{d \rho}{\rho}+\frac{d A}{A}
$$

$$
\Rightarrow \frac{d p}{\rho V^{2}}\left(1-\frac{V^{2}}{d p / d \rho}\right)=\frac{d A}{A}
$$

Class 18: Effect of Variations in Flow Cross-sectional Area ..cont

$$
\frac{d p}{\rho V^{2}}\left(1-M^{2}\right)=\frac{d A}{A}
$$

$$
\Rightarrow d p\left(1-M^{2}\right)=\rho V^{2} \frac{d A}{A} ; b u t
$$

$\frac{d p}{\rho V^{2}}=-\frac{d V}{V} ; s o$

$$
\frac{d V}{V}=-\frac{d A}{A} \frac{1}{\left(1-M^{2}\right)}
$$

> Subsonic flow $\begin{gathered}(\mathrm{Ma}<1) \\ d A>0 \\ d V<0\end{gathered}$
(a)

Supersonic flow ($\mathrm{Ma}>1$) $d A>0$
$d V>0$

$$
\begin{aligned}
& d A<0 \\
& d V<0
\end{aligned}
$$

(b)

Class 18: Effect of Variations in Flow Cross-sectional Area

How Mach number influences Temperature, Pressure and Density of the fluid?

$$
\begin{aligned}
& " t " \equiv \text { TOTAL OR STAGNATION } \\
& \frac{T_{t}}{T}=1+\frac{k-1}{2} M^{2} ; \quad k=\frac{c_{p}}{c_{v}} \\
& \frac{P_{t}}{P}=\left[1+\frac{k-1}{2} M^{2}\right]^{k /(k-1)} \\
& \frac{\rho_{t}}{\rho}=\left[1+\frac{k-1}{2} M^{2}\right]^{1 /(k-1)}
\end{aligned}
$$

Temperature, Pressure and density can be tabulated for a given value of k (for air, $k=1.4$).

Class 18: Compressible Flow \rightarrow Converging-Diverging Nozzle

Effect of Back Pressure on Flow Pattern: Shockwave and expansion

$>$ Normal Shockwave (abrupt rise or drop of pressure)
$>$ Ideally/Perfectly Expanded
$>$ Over Expanded (pressure rises at the duct exit)
$>$ Under Expanded (pressure drops at the duct exit)
$>$ Oblique Shockwave (less abrupt rise or drop of pressure)
p

Class 18: Compressible Flow \rightarrow Converging-Diverging Nozzle

Choked Flow/ Unchoked Flow:

Shockwave: Each abrupt pressure rise within and at the exit of the flow passage occurs across a very thin discontinuity in the flow called a Normal Shockwave.

Compressible Flow - Table

COMPRESSIBLE FLOW TABLES FOR

AN IDEAL GAS WITH $k=1.4$
Subsonic Flow

M	p / p_{t}	ρ / ρ_{t}	T / T_{t}	$A / A *$
0.00	1.0000	1.0000	1.0000	∞
0.05	0.9983	0.9988	0.9995	11.5914
0.10	0.9930	0.9950	0.9980	5.8218
0.15	0.9844	0.9888	0.9955	3.9103
0.20	0.9725	0.9803	0.9921	2.9630
0.25	0.9575	0.9694	0.9877	2.4027
0.30	0.9395	0.9564	0.9823	2.0351
0.35	0.9188	0.9413	0.9761	1.7780
0.40	0.8956	0.9243	0.9690	1.5901
0.45	0.8703	0.9055	0.9611	1.4487
0.50	0.8430	0.8852	0.9524	1.3398
0.52	0.8317	0.8766	0.9487	1.3034
0.54	0.8201	0.8679	0.9449	1.2703
0.56	0.8082	0.8589	0.9410	1.2403
0.58	0.7962	0.8498	0.9370	1.2130
0.60	0.7840	0.8405	0.9328	1.1882
0.62	0.7716	0.8310	0.9286	1.1657
0.64	0.7591	0.8213	0.9243	1.1452
0.66	0.7465	0.8115	0.9199	1.1265
0.68	0.7338	0.8016	0.9153	1.1097
0.70	0.7209	0.7916	0.9107	1.0944
0.72	0.7080	0.7814	0.9061	1.0806
0.74	0.6951	0.7712	0.9013	1.0681
0.76	0.6821	0.7609	0.8964	1.0570
0.78	0.6691	0.7505	0.8915	1.0471
0.80	0.6560	0.7400	0.8865	1.0382
0.82	0.6430	0.7295	0.8815	1.0305
0.84	0.6300	0.7189	0.8763	1.0237
0.86	0.6170	0.7083	0.8711	1.0179
0.88	0.6041	0.6977	0.8659	1.0129
0.90	0.5913	0.6870	0.8606	1.0089
0.92	0.5785	0.6764	0.8552	1.0056
0.94	0.5658	0.6658	0.8498	1.0031
0.96	0.5532	0.6551	0.8444	1.0014
0.98	0.5407	0.6445	0.8389	1.0003
1.00	0.5283	0.6339	0.8333	1.0000

A* is critical area for choked flow at throat.

Source: Roberson and Crowe, Engineering Fluid Mechanics, $6^{\text {th }}$ Edition, 1996, John Wiley and Sons.

Compressible Flow - Table

COMPRESSIBLE FLOW TABLES FOR
AN IDEAL GAS WITH $k=1.4$ (CONTINUED)

Supersonic Flow					Normal Shock Wave			
M_{1}	p / p_{t}	ρ / ρ_{t}	$\boldsymbol{T} / \boldsymbol{T}_{\boldsymbol{t}}$	A/A*	M_{2}	p_{2} / p_{1}	$\boldsymbol{T}_{2} / \boldsymbol{T}_{\boldsymbol{I}}$	$\boldsymbol{P}_{t_{2}} / P_{t_{1}}$
1.00	0.5283	0.6339	0.8333	1.000	1.000	1.000	1.000	1.0000
1.01	0.5221	0.6287	0.8306	1.000	0.9901	1.023	1.007	0.9999
1.02	0.5160	0.6234	0.8278	1.000	0.9805	1.047	1.013	09999
1.03	0.5099	0.6181	0.8250	1.001	0.9712	1.071	1.020	0.9999
1.04	0.5039	0.6129	0.8222	1.001	0.9620	1.095	1.026	0.9999
1.05	0.4979	0.6077	0.8193	1.002	0.9531	1.120	1.033	0.9998
1.06	0.4919	0.6024	0.8165	1.003	0.9444	1.144	1.039	0.9997
1.07	0.4860	0.5972	0.8137	1.004	0.9360	1.169	1.046	0.9996
1.08	0.4800	0.5920	0.8108	1.005	0.9277	1.194	1.052	0.9994
1.09	0.4742	0.5869	0.8080	1.006	0.9196	1.219	1.059	0.9992
1.10	0.4684	0.5817	0.8052	1.008	0.9118	1.245	1.065	0.9989
1.11	0.4626	0.5766	0.8023	1.010	0.9041	1.271	1.071	0.9986
1.12	0.4568	0.5714	0.7994	1.011	0.8966	1.297	1.078	0.9982
1.13	0.4511	0.5663	0.7966	1.013	0.8892	1.323	1.084	0.9978
1.14	0.4455	0.5612	0.7937	1.015	0.8820	1.350	1.090	0.9973
1.15	0.4398	0.5562	0.7908	1.017	0.8750	1.376	1.097	0.9967
1.16	0.4343	0.5511	0.7879	1.020	0.8682	1.403	1.103	0.9961
1.17	0.4287	0.5461	0.7851	1.022	0.8615	1.430	1.109	0.9953
1.18	0.4232	0.5411	0.7822	1.025	0.8549	1.458	1.115	0.9946
1.19	0.4178	0.5361	0.7793	1.026	0.8485	1.485	1.122	0.9937
1.20	0.4124	0.5311	0.7764	1.030	0.8422	1.513	1.128	0.9928
1.21	0.4070	0.5262	0.7735	1.033	0.8360	1.541	1.134	0.9918
1.22	0.4017	0.5213	0.7706	1.037	0.8300	1.570	1.141	0.9907
1.23	0.3964	0.5164	0.7677	1.040	0.8241	1.598	1.147	0.9896
1.24	0.3912	0.5115	0.7648	1.043	0.8183	1.627	1.153	0.9884
1.25	0.3861	0.5067	0.7619	1.047	0.8126	1.656	1.159	0.9871
1.30	0.3609	0.4829	0.7474	1.066	0.7860	1.805	1.191	0.9794
1.35	0.3370	0.4598	0.7329	1.089	0.7618	1.960	1.223	0.9697
1.40	0.3142	0.4374	0.7184	1.115	0.7397	2.120	1.255	0.9582
1.45	0.2927	0.4158	0.7040	1.144	0.7196	2.286	1.287	0.9448
1.50	0.2724	0.3950	0.6897	1.176	0.7011	2.458	1.320	0.9278
1.55	0.2533	0.3750	0.6754	1.212	0.6841	2.636	1.354	0.9132
1.60	0.2353	0.3557	0.6614	1.250	0.6684	2.820	1.388	0.8952
1.65	0.2184	0.3373	0.6475	1.292	0.6540	3.010	1.423	0.8760
1.70	0.2026	0.3197	0.6337	1.338	0.6405	3.205	1.458	0.8557
1.75	0.1878	0.3029	0.6202	1.386	0.6281	3.406	1.495	0.8346

Compressible Flow - Table

COMPRESSIBLE FLOW TABLES FOR
AN IDEAL GAS WITH $k=1.4$ (CONTINUED)

Supersonic Flow				Normal Shock Wave		
M_{I}	p / p_{t}	ρ / ρ_{t}	T/T $\boldsymbol{T}_{\boldsymbol{t}} \quad$ A/A*	$M_{2} \quad p_{2} / p_{1}$	$\boldsymbol{T}_{2} / \boldsymbol{T}_{1}$	$P_{t_{2}} / P_{t_{1}}$
1.80	0.1740	0.2868	0.60681 .439	$\begin{array}{lll}0.6165 & 3.613\end{array}$	1.532	0.8127
1.85	0.1612	0.2715	0.59361 .495	0.60573 .826	1.569	0.7902
1.90	0.1492	0.2570	0.58071 .555	0.59564 .045	1.608	0.7674
1.95	0.1381	0.2432	0.56801 .619	0.58624 .270	1.647	0.7442
2.00	0.1278	0.2300	0.55561 .688	0.57744 .500	1.688	0.7209
2.10	0.1094	0.2058	0.53131 .837	0.56134 .978	1.770	0.6742
2.20	$0.9352^{-1^{*}}$	0.1841	0.50812 .005	$0.5471 \quad 5.480$	1.857	0.6281
2.30	0.7997^{-1}	0.1646	0.48592 .193	0.53446 .005	1.947	0.5833
2.50	1.5853^{-1}	0.1317	0.44442 .637	$0.5130 \quad 7.125$	2.138	0.4990
2.60	0.5012^{-1}	0.1179	$0.4252 \quad 2.896$	0.50397 .720	2.238	0.4601
2.70	0.4295^{-1}	0.1056	0.40683 .183	0.49568 .338	2.343	0.4236
2.80	0.3685^{-1}	0.9463^{-1}	0.38943 .500	0.48828 .980	2.451	0.3895
2.90	0.3165^{-1}	0.8489^{-1}	0.37293 .850	$0.4814 \quad 9.645$	2.563	0.3577
3.00	0.2722^{-1}	0.7623^{-1}	0.35714 .235	0.475210 .33	2.679	0.3283
3.50	0.1311^{-1}	0.4523^{-1}	0.28996 .790	0.451214 .13	3.315	0.2129
4.00	0.6586^{-2}	0.2766^{-1}	0.238110 .72	0.435018 .50	4.047	0.1388
4.50	0.3155^{-2}	0.1745^{-1}	0.198016 .56	0.423623 .46	4.875	0.9170^{-1}
5.00	0.1890^{-2}	0.1134^{-1}	0.166725 .00	0.415229 .00	5.800	0.6172^{-1}
5.50	0.1075^{-2}	0.7578^{-2}	0.141836 .87	0.409035 .13	6.822	0.4236^{-1}
6.00	0.6334^{-2}	0.5194^{-2}	0.122053 .18	0.404241 .83	7.941	0.2965^{-1}
6.50	0.3855^{-2}	0.3643^{-2}	0.105875 .13	0.400449 .13	9.156	0.2115^{-1}
7.00	0.2416^{-3}	0.2609^{-2}	$0.9259^{-1} 104.1$	0.397457 .00	10.47	0.1535^{-1}
7.50	0.1554^{-3}	0.1904^{-2}	$0.8163^{-1} 141.8$	0.394965 .46	11.88	$0.1133{ }^{-1}$
8.00	0.1024^{-3}	0.1414^{-2}	$0.7246^{-1} 190.1$	0.392974 .50	13.39	0.8488^{-2}
8.50	0.6898^{-4}	0.1066^{-3}	$0.6472^{-1} 251.1$	0.391284 .13	14.99	0.6449^{-2}
9.00	0.4739^{-4}	0.8150^{-3}	$0.5814^{-1} 327.2$	0.389894 .33	16.69	$0.4964{ }^{-2}$
9.50	0.3314^{-4}	0.6313^{-3}	$0.5249^{-1} 421.1$	0.3886105 .1	18.49	0.3866^{-2}
10.00	0.2356^{-4}	0.4948^{-3}	$0.4762^{-1} 535.9$	0.3876116 .5	20.39	0.3045^{-2}

Compressible Flow - Table

Properties of the U.S. Standard Atmosphere (SI Units)

Acceleration of Gravity,											
Altitude (m)							Temperature $\left(\mathrm{C}^{\circ}\right)$	g $\left(\mathrm{~m} / \mathrm{s}^{2}\right)$	p $[\mathrm{~Pa}, \mathrm{abs}]$	Density, $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	Dynamic Viscosity, μ
1,000	21.50	9.810	$1.139 \mathrm{E}+5$	$1.347 \mathrm{E}+0$	$1.821 \mathrm{E}-5$						
0	15.00	9.807	$1.013 \mathrm{E}+5$	$1.225 \mathrm{E}+0$	$1.789 \mathrm{E}-5$						
1,000	8.50	9.804	$8.988 \mathrm{E}+4$	$1.112 \mathrm{E}+0$	$1.758 \mathrm{E}-5$						
2,000	2.00	9.801	$7.950 \mathrm{E}+4$	$1.007 \mathrm{E}+0$	$1.726 \mathrm{E}-5$						
3,000	-4.49	9.797	$7.012 \mathrm{E}+4$	$9.093 \mathrm{E}-1$	$1.694 \mathrm{E}-5$						
4,000	-10.98	9.794	$6.166 \mathrm{E}+4$	$8.194 \mathrm{E}-1$	$1.661 \mathrm{E}-5$						
5,000	-17.47	9.791	$5.405 \mathrm{E}+4$	$7.364 \mathrm{E}-1$	$1.628 \mathrm{E}-5$						
6,000	-23.96	9.788	$4.722 \mathrm{E}+4$	$6.601 \mathrm{E}-1$	$1.595 \mathrm{E}-5$						
7,000	-30.45	9.785	$4.111 \mathrm{E}+4$	$5.900 \mathrm{E}-1$	$1.561 \mathrm{E}-5$						
8,000	-36.94	9.782	$3.565 \mathrm{E}+4$	$5.258 \mathrm{E}-1$	$1.527 \mathrm{E}-5$						
9,000	-43.42	9.779	$3.080 \mathrm{E}+4$	$4.671 \mathrm{E}-1$	$1.493 \mathrm{E}-5$						
10,000	-49.90	9.776	$2.650 \mathrm{E}+4$	$4.135 \mathrm{E}-1$	$1.458 \mathrm{E}-5$						
15,000	-56.50	9.761	$1.211 \mathrm{E}+4$	$1.948 \mathrm{E}-1$	$1.422 \mathrm{E}-5$						

Class 18: Compressible Flow

Problem: For an aircraft flying at Mach 3.0 at an altitude of $10,000 \mathrm{~m}\left(\mathrm{~T}=-50^{\circ} \mathrm{C}\right)$, estimate the surface temperature at the nose.

Solution: From the table, @ $\mathbf{M}=\mathbf{3}$,

$$
\begin{aligned}
& \frac{T}{T_{t}}=0.3571 \\
& \Rightarrow \frac{T_{t}}{T}=2.80 \\
& \Rightarrow T_{t}=2.8(273-50)=624^{\circ} \mathrm{K}=351^{\circ} \mathrm{C}
\end{aligned}
$$

Class 18: Compressible Flow

Problem: A converging nozzle has an exit area of $500 \mathrm{~mm}^{2}$. Air enters this nozzle from a reservoir at $1000 \mathrm{kpa} \& 360 \mathrm{~K}$. The exit pressure is 800 kPa . Find the mass flow rate through the nozzle.
Solution: First we determine the pressure ratio,

$$
\frac{P_{E}}{P_{t}}=\frac{800}{1000}=0.8(\text { subsonic }>0.5283)
$$

Using this value, we get from the table

$$
\begin{aligned}
& M_{E}=0.573 \\
& \Rightarrow \frac{T_{E}}{T_{t}}=0.9381 \\
& \Rightarrow T_{E}=0.9381 \times 360=337.7^{\circ} \mathrm{K}
\end{aligned}
$$

Now
$c_{E}=\sqrt{k R T_{E}}=\sqrt{(1.4)(287)(337.7)}=368.4 \mathrm{~m} / \mathrm{s}$
Hence

$$
\begin{aligned}
& V_{E}=M_{E} \cdot c_{E}=(0.573) \cdot(368.4 \mathrm{~m} / \mathrm{s})=211.1 \mathrm{~m} / \mathrm{s} \\
& \rho_{E}=\frac{P_{E}}{R T_{E}}=\frac{800 \times 10^{3} \mathrm{~N} / \mathrm{m}^{2}}{\left(287 \mathrm{~J} / \mathrm{kg} .^{o} \mathrm{~K}\right)\left(337.7^{o} \mathrm{~K}\right)}=8.254 \mathrm{~kg} / \mathrm{m}^{3} \\
& \dot{m}=\rho_{E} V_{E} A_{E}=\left(8.254 \mathrm{~kg} / \mathrm{m}^{3}\right)(211.1 \mathrm{~m} / \mathrm{s})\left(500 \times 10^{-6} \mathrm{~m}^{2}\right) \\
& \Rightarrow \dot{m}=0.871 \mathrm{~kg} / \mathrm{s}
\end{aligned}
$$

Class 18: Compressible Flow

Problem: The stagnation pressure indicated by a Pitot tube mounted on an airplane in flight is 45 kPa (abs). If the aircraft is cruising in standard atmosphere at an altitude of $10,000 \mathrm{~m}$, determine the speed and Mach number involved.

Solution: First we find the pressure ratio
$P=2.65 \times 10^{4} \mathrm{~Pa}, \quad P_{t}=45 \times 10^{3} \mathrm{~Pa}$
$\Rightarrow \frac{P}{P_{t}}=0.589($ subsonic $>0.5283)$
Now from the table, we get
$M \cong 0.90$
Therefore,

$V=M \cdot c=M \sqrt{k R T}$
$\Rightarrow V=0.90 \sqrt{(1.4)(287)(273-49.90)}=269 \mathrm{~m} / \mathrm{s}$

