

### SUPERSONIC FLUID DYNAMICS Ma > 0.2







# **Compressible Flow**

Mach Number:  $M = \frac{v}{c}$ 

V: Velocity of Fluid c: Speed of Sound

 $c = \sqrt{kRT}$ ; R=Ideal gas constant (for air, R=287 N.m/kgK)

M < 0.3 incompressible flow

M < 1.0 subsonic flow

M @ 1.0 transonic flow

M = 1.0 sonic flow

**M** > 1.0 supersonic flow

M > 3.0 hypersonic flow



## **Class 18: Compressible Flow - Ideal gas law**

### **Ideal/Perfect Gas Law (equation of state for an ideal gas):**

Changes in gas density directly related to changes in pressure and temperature through the equation

$$p = \rho RT$$

, p is the pressure,  $\rho$  is the density, T is the absolute temperature and R is a gas constant.

### **Mass flow rate:**

$$\dot{m} = \rho A V = \frac{P}{RT} A V$$

$$M = \frac{V}{C}$$

$$\Rightarrow \dot{m} = \frac{P}{RT}A * M * C = \frac{P}{RT}A * M * \sqrt{kRT} = P * A * M * \sqrt{\frac{k}{RT}}$$

### **Class 18: Compressible Flow - Example**

**Example:** Air at Mach 1.25 passes through a circular channel 10 cm in diameter. The static pressure and temperature are 100kpa and 30°C respectively. Find the mass flow rate.

**Solution:** The mass flow rate can be calculated as

$$\dot{m} = \rho AV = \frac{P}{RT} AV = P * A * M * \sqrt{\frac{k}{RT}}$$

$$\Rightarrow \dot{m} = 100kPka \times \left(\frac{\left(10^3 N/m^3\right)}{1kPa}\right) \times \frac{\pi}{4} (0.01m)^2 \times 1.25 \sqrt{\frac{1.4}{\left(287 N.m/kg^o K\right) \left(273 + 30\right)^o K}}$$

$$\Rightarrow \dot{m} = 3.93 \frac{kg}{s}$$

### **Class 18: Compressible Flow – different processes**

### Adiabatic Process

An adiabatic process is one in which no heat is gained or lost by the system. The <u>first law of thermodynamics</u> with Q=0 shows that all the change in <u>internal</u> <u>energy</u> is in the form of work done. This puts a constraint on the <u>heat engine</u> process leading to the <u>adiabatic condition</u>. This condition can be used to derive the expression for the work done during an adiabatic process.

$$PV^{k} = \text{constant} = C; \ k = C_{p}/C_{v} \text{ ratio of specific heats.}$$

### Reversible process

A *reversible process* is a process that, after it has taken place, can be reversed and causes no change in either the <u>system</u> or its surroundings.

### • Isentropic flow

An isentropic flow is a <u>flow</u> that is both adiabatic and reversible. That is, no energy is added to the flow, and no energy losses occur due to <u>friction</u> or <u>dissipative effects</u>.

### **Class 18: Compressible Flow – different processes**

Relationship between temperature, density and pressure for the isentropic flow of an ideal gas:





For isentropic flow:

$$c = \sqrt{\left(\frac{dp}{d\rho}\right)_s} = \text{speed of sound}$$

### **Class 18: Compressible Flow — Converging-Diverging Nozzle**

### **Experiment: Converging-diverging nozzle**





### **Class 18: Effect of Variations in Flow Cross-sectional Area**

Newtons 2<sup>nd</sup> law applied to the inviscid and steady flow (Bernoulli):

$$dp + 1/2\rho d (V^{2}) + \gamma dz = 0$$
  

$$\Rightarrow dp + 1/2\rho d (V^{2}) = 0; \text{ for ideal gas P. E. term dropped}$$
  

$$\Rightarrow \frac{dp}{\rho V^{2}} = -\frac{dV}{V} \qquad c = \sqrt{\left(\frac{dp}{d\rho}\right)}; M = \frac{V}{c}$$
  

$$c^{2} = \left(\frac{dp}{d\rho}\right) = \frac{V^{2}}{M^{2}}; or$$
  

$$m = \rho AV = \text{constant}$$
  

$$\Rightarrow \ln\rho + \ln A + \ln V = 0$$
  

$$\Rightarrow \frac{d\rho}{\rho} + \frac{dA}{A} + \frac{dV}{V} = 0$$
  

$$\Rightarrow -\frac{dV}{V} = \frac{d\rho}{\rho} + \frac{dA}{A}$$
  

$$\Rightarrow \frac{dp}{\rho V^{2}} \left(1 - \frac{V^{2}}{dp/d\rho}\right) = \frac{dA}{A}$$
  

$$\Rightarrow dp \left(1 - M^{2}\right) = \rho V^{2} \frac{dA}{A}$$
  
Pressure, Mach #, density and velocity are correlated

with ARE

### **Class 18: Effect of Variations in Flow Cross-sectional Area** ..cont



## FIGURE 11.5

### **Class 18: Effect of Variations in Flow Cross-sectional Area**

How Mach number influences Temperature, Pressure and Density of the fluid?

"t" = TOTAL OR STAGNATION



$$\frac{\rho_t}{\rho} = \left[1 + \frac{k-1}{2}M^2\right]^{\frac{1}{k}}$$

Temperature, Pressure and density can be tabulated for a given value of k (for air, k=1.4).

### **Class 18: Compressible Flow** —> **Converging-Diverging Nozzle**

### Effect of Back Pressure on Flow Pattern: Shockwave and expansion



### **Class 18: Compressible Flow — Converging-Diverging Nozzle**

### **Choked Flow/ Unchoked Flow:**



**Shockwave:** Each abrupt pressure rise within and at the exit of the flow passage occurs across a very thin discontinuity in the flow called a **Normal Shockwave**.



**Choked Flow:** Choked flow occurs when the Mach number is 1.0 at the minimum cross-sectional area.

#### COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS WITH k = 1.4

| Subsonic Flow |                     |                     |                     |         |  |  |  |  |
|---------------|---------------------|---------------------|---------------------|---------|--|--|--|--|
| М             | $p/p_t$             | $\rho/\rho_{\rm t}$ | $T/T_t$             | A/A*    |  |  |  |  |
| 0.00          | 1.0000              | 1.0000              | 1.0000              | ~~      |  |  |  |  |
| 0.05          | 0.9983              | 0.9988              | 0.9995              | 11.5914 |  |  |  |  |
| 0.10          | 0.9930              | 0.9950              | 0.9980              | 5.8218  |  |  |  |  |
| 0.15          | 0.9844              | 0.9888              | 0.9955              | 3.9103  |  |  |  |  |
| 0.20          | 0.9725              | 0.9803              | 0.9921              | 2.9630  |  |  |  |  |
| 0.25          | 0.9575              | 0.9694              | 0.9877              | 2.4027  |  |  |  |  |
| 0.30          | 0.9395              | 0.9564              | 0.9823              | 2.0351  |  |  |  |  |
| 0.35          | 0.9188              | 0.9413              | 0.9761              | 1.7780  |  |  |  |  |
| 0.40          | 0.8956              | 0.9243              | 0.9690              | 1.5901  |  |  |  |  |
| 0.45          | 0.8703              | 0.9055              | 0.9611              | 1.4487  |  |  |  |  |
| 0.50          | 0.8430              | 0.8852              | 0.9524              | 1.3398  |  |  |  |  |
| 0.52          | 0.8317              | 0.8766              | 0.9487              | 1.3034  |  |  |  |  |
| 0.54          | 0.8201              | 0.8679              | 0.9449              | 1.2703  |  |  |  |  |
| 0.56          | 0.8082              | 0.8589              | 0.9410              | 1.2403  |  |  |  |  |
| 0.58          | 0.7962              | 0.8498              | 0.9370              | 1.2130  |  |  |  |  |
| 0.60          | 0.7840              | 0.8405              | 0.9328              | 1.1882  |  |  |  |  |
| 0.62          | 0.7716              | 0.8310              | 0.9286              | 1.1657  |  |  |  |  |
| 0.64          | 0.7591              | 0.8213              | 0.9243              | 1.1452  |  |  |  |  |
| 0.66          | 0.7465              | 0.8115              | 0.9199              | 1.1265  |  |  |  |  |
| 0.68          | 0.7338              | 0.8016              | 0.9153              | 1.1097  |  |  |  |  |
| 0.70          | 0.7209              | 0.7916              | 0.9107              | 1.0944  |  |  |  |  |
| 0.72          | 0.7080              | 0.7814              | 0.9061              | 1.0806  |  |  |  |  |
| 0.74          | 0.6951              | 0.7712              | 0.9013              | 1.0681  |  |  |  |  |
| 0.76          | 0.6821              | 0.7609              | 0.8964              | 1.0570  |  |  |  |  |
| 0.78          | 0.6691              | 0.7505              | 0.8915              | 1.0471  |  |  |  |  |
| 0.80          | 0.6560              | 0.7400              | 0.8865              | 1.0382  |  |  |  |  |
| 0.82          | 0.6430              | 0.7295              | 0.8815              | 1.0305  |  |  |  |  |
| 0.84          | 0.6300              | 0.7189              | 0.8763              | 1.0237  |  |  |  |  |
| 0.86          | 0.6170              | 0.7083              | 0.8711              | 1.0179  |  |  |  |  |
| 0.88          | 0.6041              | 0.6977              | 0.8659              | 1.0129  |  |  |  |  |
| 0.90          | 0.5913              | 0.6870              | 0.8606              | 1.0089  |  |  |  |  |
| 0.92          | 0.5785              | 0.6764              | 0.8552              | 1.0056  |  |  |  |  |
| 0.94          | 0.5658              | 0.6658              | 0.8498              | 1.0031  |  |  |  |  |
| 0.96          | 0.5532              | 0.6551              | 0.8444              | 1.0014  |  |  |  |  |
| 0.98          | 0.5407              | 0.6445              | 0.8389              | 1.0003  |  |  |  |  |
| 1.00          | <mark>0.5283</mark> | 0.6339              | <mark>0.8333</mark> | 1.0000  |  |  |  |  |

A\* is critical area for choked flow at throat.

Source: Roberson and Crowe, Engineering Fluid Mechanics, 6<sup>th</sup> Edition, 1996, John Wiley and Sons.

| Supersonic Flow |                                   |               |         |                       | Normal Shock Wave |           |           |                   |
|-----------------|-----------------------------------|---------------|---------|-----------------------|-------------------|-----------|-----------|-------------------|
| $M_I$           | $\boldsymbol{p}/\boldsymbol{p}_t$ | $\rho/\rho_t$ | $T/T_t$ | <i>A</i> / <i>A</i> * | $M_2$             | $p_2/p_1$ | $T_2/T_1$ | $P_{t_2}/P_{t_1}$ |
|                 |                                   |               |         |                       |                   |           |           |                   |
| 1.00            | 0.5283                            | 0.6339        | 0.8333  | 1.000                 | 1.000             | 1.000     | 1.000     | 1.0000            |
| 1.01            | 0.5221                            | 0.6287        | 0.8306  | 1.000                 | 0.9901            | 1.023     | 1.007     | 0.9999            |
| 1.02            | 0.5160                            | 0.6234        | 0.8278  | 1.000                 | 0.9805            | 1.047     | 1.013     | 0 9999            |
| 1.03            | 0.5099                            | 0.6181        | 0.8250  | 1.001                 | 0.9712            | 1.071     | 1.020     | 0.9999            |
| 1.04            | 0.5039                            | 0.6129        | 0.8222  | 1.001                 | 0.9620            | 1.095     | 1.026     | 0.9999            |
| 1.05            | 0.4979                            | 0.6077        | 0.8193  | 1.002                 | 0.9531            | 1.120     | 1.033     | 0.9998            |
| 1.06            | 0.4919                            | 0.6024        | 0.8165  | 1.003                 | 0.9444            | 1.144     | 1.039     | 0.9997            |
| 1.07            | 0.4860                            | 0.5972        | 0.8137  | 1.004                 | 0.9360            | 1.169     | 1.046     | 0.9996            |
| 1.08            | 0.4800                            | 0.5920        | 0.8108  | 1.005                 | 0.9277            | 1.194     | 1.052     | 0.9994            |
| 1.09            | 0.4742                            | 0.5869        | 0.8080  | 1.006                 | 0.9196            | 1.219     | 1.059     | 0.9992            |
| 1.10            | 0.4684                            | 0.5817        | 0.8052  | 1.008                 | 0.9118            | 1.245     | 1.065     | 0.9989            |
| 1.11            | 0.4626                            | 0.5766        | 0.8023  | 1.010                 | 0.9041            | 1.271     | 1.071     | 0.9986            |
| 1.12            | 0.4568                            | 0.5714        | 0.7994  | 1.011                 | 0.8966            | 1.297     | 1.078     | 0.9982            |
| 1.13            | 0.4511                            | 0.5663        | 0.7966  | 1.013                 | 0.8892            | 1.323     | 1.084     | 0.9978            |
| 1.14            | 0.4455                            | 0.5612        | 0.7937  | 1.015                 | 0.8820            | 1.350     | 1.090     | 0.9973            |
| 1.15            | 0.4398                            | 0.5562        | 0.7908  | 1.017                 | 0.8750            | 1.376     | 1.097     | 0.9967            |
| 1.16            | 0.4343                            | 0.5511        | 0.7879  | 1.020                 | 0.8682            | 1.403     | 1.103     | 0.9961            |
| 1.17            | 0.4287                            | 0.5461        | 0.7851  | 1.022                 | 0.8615            | 1.430     | 1.109     | 0.9953            |
| 1.18            | 0.4232                            | 0.5411        | 0.7822  | 1.025                 | 0.8549            | 1.458     | 1.115     | 0.9946            |
| 1.19            | 0.4178                            | 0.5361        | 0.7793  | 1.026                 | 0.8485            | 1.485     | 1.122     | 0.9937            |
| 1.20            | 0.4124                            | 0.5311        | 0.7764  | 1.030                 | 0.8422            | 1.513     | 1.128     | 0.9928            |
| 1.21            | 0.4070                            | 0.5262        | 0.7735  | 1.033                 | 0.8360            | 1.541     | 1.134     | 0.9918            |
| 1.22            | 0.4017                            | 0.5213        | 0.7706  | 1.037                 | 0.8300            | 1.570     | 1.141     | 0.9907            |
| 1.23            | 0.3964                            | 0.5164        | 0.7677  | 1.040                 | 0.8241            | 1.598     | 1.147     | 0.9896            |
| 1.24            | 0.3912                            | 0.5115        | 0.7648  | 1.043                 | 0.8183            | 1.627     | 1.153     | 0.9884            |
| 1.25            | 0.3861                            | 0.5067        | 0.7619  | 1.047                 | 0.8126            | 1.656     | 1.159     | 0.9871            |
| 1.30            | 0.3609                            | 0.4829        | 0.7474  | 1.066                 | 0.7860            | 1.805     | 1.191     | 0.9794            |
| 1.35            | 0.3370                            | 0.4598        | 0.7329  | 1.089                 | 0.7618            | 1.960     | 1.223     | 0.9697            |
| 1.40            | 0.3142                            | 0.4374        | 0.7184  | 1.115                 | 0.7397            | 2.120     | 1.255     | 0.9582            |
| 1.45            | 0.2927                            | 0.4158        | 0.7040  | 1.144                 | 0.7196            | 2.286     | 1.287     | 0.9448            |
| 1.50            | 0.2724                            | 0.3950        | 0.6897  | 1.176                 | 0.7011            | 2.458     | 1.320     | 0.9278            |
| 1.55            | 0.2533                            | 0.3750        | 0.6754  | 1.212                 | 0.6841            | 2.636     | 1.354     | 0.9132            |
| 1.60            | 0.2353                            | 0.3557        | 0.6614  | 1.250                 | 0.6684            | 2.820     | 1.388     | 0.8952            |
| 1.65            | 0.2184                            | 0.3373        | 0.6475  | 1.292                 | 0.6540            | 3.010     | 1.423     | 0.8760            |
| 1.70            | 0.2026                            | 0.3197        | 0.6337  | 1.338                 | 0.6405            | 3.205     | 1.458     | 0.8557            |
| 1.75            | 0.1878                            | 0.3029        | 0.6202  | 1.386                 | 0.6281            | 3.406     | 1.495     | 0.8346            |
|                 |                                   |               |         |                       |                   |           |           |                   |

### COMPRESSIBLE FLOW TABLES FOR AN IDEAL GAS WITH k = 1.4 (CONTINUED)

| Supersonic Flow |                      |                    |       |                       | Normal Shock Wave |           |           |                   |
|-----------------|----------------------|--------------------|-------|-----------------------|-------------------|-----------|-----------|-------------------|
| $M_1$           | $p/p_t$              | $\rho/\rho_t$ $T/$ | $T_t$ | <i>A</i> / <i>A</i> * | $M_2$             | $p_2/p_1$ | $T_2/T_1$ | $P_{t_2}/P_{t_1}$ |
| 1.80            | 0.1740               | 0.2868 0.6         | 6068  | 1.439                 | 0.6165            | 3.613     | 1.532     | 0.8127            |
| 1.85            | 0.1612               | 0.2715 0.5         | 936   | 1.495                 | 0.6057            | 3.826     | 1.569     | 0.7902            |
| 1.90            | 0.1492               | 0.2570 0.5         | 807   | 1.555                 | 0.5956            | 4.045     | 1.608     | 0.7674            |
| 1.95            | 0.1381               | 0.2432 0.5         | 680   | 1.619                 | 0.5862            | 4.270     | 1.647     | 0.7442            |
| 2.00            | 0.1278               | 0.2300 0.5         | 556   | 1.688                 | 0.5774            | 4.500     | 1.688     | 0.7209            |
| 2.10            | 0.1094               | 0.2058 0.5         | 313   | 1.837                 | 0.5613            | 4.978     | 1.770     | 0.6742            |
| 2.20            | $0.9352^{-1*}$       | 0.1841 0.5         | 081   | 2.005                 | 0.5471            | 5.480     | 1.857     | 0.6281            |
| 2.30            | $0.7997^{-1}$        | 0.1646 0.4         | 859   | 2.193                 | 0.5344            | 6.005     | 1.947     | 0.5833            |
| 2.50            | $1.5853^{-1}$        | 0.1317 0.4         | 444   | 2.637                 | 0.5130            | 7.125     | 2.138     | 0.4990            |
| 2.60            | $0.5012^{-1}$        | 0.1179 0.4         | 252   | 2.896                 | 0.5039            | 7.720     | 2.238     | 0.4601            |
| 2.70            | $0.4295^{-1}$        | 0.1056 0.4         | -068  | 3.183                 | 0.4956            | 8.338     | 2.343     | 0.4236            |
| 2.80            | $0.3685^{-1}$        | $0.9463^{-1}$ 0.3  | 894   | 3.500                 | 0.4882            | 8.980     | 2.451     | 0.3895            |
| 2.90            | $0.3165^{-1}$        | $0.8489^{-1}$ 0.3  | 729   | 3.850                 | 0.4814            | 9.645     | 2.563     | 0.3577            |
| 3.00            | $0.2722^{-1}$        | $0.7623^{-1}$ 0.3  | 571   | 4.235                 | 0.4752            | 10.33     | 2.679     | 0.3283            |
| 3.50            | $0.1311^{-1}$        | $0.4523^{-1}$ 0.2  | 899   | 6.790                 | 0.4512            | 14.13     | 3.315     | 0.2129            |
| 4.00            | $0.6586^{-2}$        | $0.2766^{-1}$ 0.2  | 381   | 10.72                 | 0.4350            | 18.50     | 4.047     | 0.1388            |
| 4.50            | $0.3155^{-2}$        | $0.1745^{-1}$ 0.1  | 980   | 16.56                 | 0.4236            | 23.46     | 4.875     | $0.9170^{-1}$     |
| 5.00            | $0.1890^{-2}$        | $0.1134^{-1}$ 0.1  | 667   | 25.00                 | 0.4152            | 29.00     | 5.800     | $0.6172^{-1}$     |
| 5.50            | $0.1075^{-2}$        | $0.7578^{-2}$ 0.1  | 418   | 36.87                 | 0.4090            | 35.13     | 6.822     | $0.4236^{-1}$     |
| 6.00            | $0.6334^{-2}$        | $0.5194^{-2}$ 0.1  | 220   | 53.18                 | 0.4042            | 41.83     | 7.941     | $0.2965^{-1}$     |
| 6.50            | $0.3855^{-2}$        | $0.3643^{-2}$ 0.1  | 058   | 75.13                 | 0.4004            | 49.13     | 9.156     | $0.2115^{-1}$     |
| 7.00            | $0.2416^{-3}$        | $0.2609^{-2}$ 0.9  | 259   | $^{1}$ 104.1          | 0.3974            | 57.00     | 10.47     | $0.1535^{-1}$     |
| 7.50            | $0.1554^{-3}$        | $0.1904^{-2}$ 0.8  | 163   | $^{1}$ 141.8          | 0.3949            | 65.46     | 11.88     | $0.1133^{-1}$     |
| 8.00            | $0.1024^{-3}$        | $0.1414^{-2}$ 0.7  | 246   | <sup>1</sup> 190.1    | 0.3929            | 74.50     | 13.39     | $0.8488^{-2}$     |
| 8.50            | $0.6898^{-4}$        | $0.1066^{-3}$ 0.6  | 472   | <sup>1</sup> 251.1    | 0.3912            | 84.13     | 14.99     | $0.6449^{-2}$     |
| 9.00            | $0.4739^{-4}$        | $0.8150^{-3}$ 0.5  | 814   | <sup>1</sup> 327.2    | 0.3898            | 94.33     | 16.69     | $0.4964^{-2}$     |
| 9.50            | $0.3314^{-4}$        | $0.6313^{-3}$ 0.5  | 249   | $^{1}421.1$           | 0.38861           | 05.1      | 18.49     | $0.3866^{-2}$     |
| 10.00           | 0.2356 <sup>-4</sup> | $0.4948^{-3}$ 0.4  | 762   | <sup>1</sup> 535.9    | 0.38761           | 16.5      | 20.39     | $0.3045^{-2}$     |

### $\frac{\text{COMPRESSIBLE FLOW TABLES FOR}}{\text{AN IDEAL GAS WITH } k = 1.4 (\text{CONTINUED})}$

 $x^{n}$  means  $x \cdot 10^{n}$ 

|                      | Prope   | erties of the       | U.S. Standard .        | Atmosphere (SI         | Units)     |  |
|----------------------|---------|---------------------|------------------------|------------------------|------------|--|
|                      | A       | Dynamic             |                        |                        |            |  |
|                      |         | Gravity,            | Pressure,              | Density,               | Viscosity, |  |
| Altitude Temperature |         | g                   | р                      | ρ                      | μ          |  |
| (m)                  | (C°)    | (m/s <sup>2</sup> ) | [Pa, abs]              | (kg/m <sup>3</sup> )   | (Pa.s)     |  |
| - 1,000              | 21.50   | 9.810               | 1.139E+5               | 1.347E+0               | 1.821E - 5 |  |
| 0                    | 15.00   | 9.807               | 1.013 E + 5            | 1.225 E + 0            | 1.789E - 5 |  |
| 1,000                | 8.50    | 9.804               | 8.988 E + 4            | 1.112E + 0             | 1.758E - 5 |  |
| 2,000                | 2.00    | 9.801               | 7.950 E + 4            | $1.007 \mathrm{E} + 0$ | 1.726E - 5 |  |
| 3,000                | - 4.49  | 9.797               | 7.012E + 4             | 9.093E-1               | 1.694E - 5 |  |
| 4,000                | -10.98  | 9.794               | 6.166 E + 4            | 8.194E-1               | 1.661E - 5 |  |
| 5,000                | -17.47  | 9.791               | $5.405 \mathrm{E} + 4$ | 7.364E-1               | 1.628E - 5 |  |
| 6,000                | -23.96  | 9.788               | 4.722E + 4             | 6.601E-1               | 1.595E - 5 |  |
| 7,000                | - 30.45 | 9.785               | $4.111 \mathrm{E} + 4$ | 5.900E-1               | 1.561E - 5 |  |
| 8,000                | - 36.94 | 9.782               | 3.565 E + 4            | 5.258E-1               | 1.527E - 5 |  |
| 9,000                | - 43.42 | 9.779               | $3.080 \mathrm{E} + 4$ | 4.671E-1               | 1.493E - 5 |  |
| 10,000               | - 49.90 | 9.776               | 2.650 E + 4            | 4.135E-1               | 1.458E - 5 |  |
| 15,000               | -56.50  | 9.761               | 1.211  E + 4           | 1.948E-1               | 1.422E - 5 |  |

**Class 18: Compressible Flow** 

**Problem:** For an aircraft flying at Mach 3.0 at an altitude of 10,000 m (T = -50°C), estimate the surface temperature at the nose.



Solution: From the table, @ M = 3,  $\frac{T}{T_t} = 0.3571$   $\Rightarrow \frac{T_t}{T} = 2.80$   $\Rightarrow T_t = 2.8(273 - 50) = 624^\circ K = 351^\circ C$  **Class 18: Compressible Flow** 

**Problem:** A converging nozzle has an exit area of 500mm<sup>2</sup>. Air enters this nozzle from a reservoir at 1000kpa & 360K. The exit pressure is 800kPa. Find the mass flow rate through the nozzle.

**Solution:** First we determine the pressure ratio,

$$\frac{P_E}{P_t} = \frac{800}{1000} = 0.8(subsonic > 0.5283)$$
  
Using this value, we get from the table  
$$M_E = 0.573$$
$$\Rightarrow \frac{T_E}{T_t} = 0.9381$$
$$\Rightarrow T_E = 0.9381 \times 360 = 337.7^{\circ} K$$



Now

 $\Rightarrow$ 

$$c_{E} = \sqrt{kRT_{E}} = \sqrt{(1.4)(287)(337.7)} = 368.4 \, m/s$$
  
Hence  

$$V_{E} = M_{E} \cdot c_{E} = (0.573) \cdot (368.4 \, m/s) = 211.1 \, m/s$$
  

$$\rho_{E} = \frac{P_{E}}{RT_{E}} = \frac{800 \times 10^{3} \, N/m^{2}}{(287 \, J/kg.^{\circ} \, K)(337.7^{\circ} \, K)} = 8.254 \, kg/m^{3}$$
  

$$\dot{m} = \rho_{E} V_{E} A_{E} = (8.254 \, kg/m^{3})(211.1 \, m/s)(500 \times 10^{-6} \, m^{2})$$

$$\dot{m} = 0.871 kg/s$$

**Class 18: Compressible Flow** 

**Problem:** The stagnation pressure indicated by a Pitot tube mounted on an airplane in flight is 45 kPa (abs). If the aircraft is cruising in standard atmosphere at an altitude of 10,000m, determine the speed and Mach number involved.

**Solution:** First we find the pressure ratio  $P = 2.65 \times 10^4 Pa$ ,  $P_t = 45 \times 10^3 Pa$ 

$$\Rightarrow \frac{P}{P_t} = 0.589 \text{ (subsonic > 0.5283)}$$

Now from the table, we get

 $M \cong 0.90$ 

Therefore,

$$V = M \cdot c = M\sqrt{kRT}$$
  

$$\Rightarrow V = 0.90\sqrt{(1.4)(287)(273 - 49.90)} = 269 \, m/s$$

