THERMODYNAMICS \& $1^{\text {st }}$ LAW REVIEW

- CHAPTER 5
- ENERGY CONSERVATION VIDEO

Dro IK. J. Berry

A FUTURE REALITY

- The future world society will represent a standard of living unprecedented in recent history. As any society develops and prospers, CLEAN WATER and the efficient generation and use of CLEAN ENERGY are both vital elements necessary to ensure economic and social viability. A country's economic strength is dependent upon the ability to provide efficient and affordable electric power for transportation, the conveniences of home and workplace, and therefore helps to build a strong
 and healthy societal foundation.

Primary Grid Power Transmission Losses

Renewable

 Ener rgyhttps:/ /www.youtube.com/watch?v=1kUE0BZtTRc\&t=3s

CONSERVATIO LAWS

https://www.youtube.com/watch?v=VxCORJ8dN3 Y\&list=RDLV_8EEnMwkmZk\&index=24

In Alaska, Wildfires and
 Unprecedented Temperatures Bring Climate Crisis into Focus

Last updated: 14 May 2023, 06:00. Data from the Alaska Interagency Coordination Center, which is currently tracking 54 fires in Alaska (active, smoldering or in the process of being demobilized). Circles represent the size, but not the shape, of the fire. May 14, 2023

Accaterated Evpansion of the Universe

Chapter 5

CONSERVATION OF ENERGY

$+$
CONSERVATION OF MOMENTUM
$+$
CONSERVATION OF MASS

- ENERGY/MOMENTUM/MASS is neither created nor destroyed
- Transform from one form to another

Conservation of Energy

$e=$ Total energy per unit mass $=\frac{E}{M}\left[\frac{J}{\mathrm{~kg}}\right]$
$\Rightarrow e=$ Internal energy + Potential energy + Kinetic energy

$$
\Rightarrow e=\left(u+g z+\frac{1}{2} V^{2}\right)\left[\frac{J}{k g}=\frac{m^{2}}{s^{2}}\right] \quad \begin{aligned}
& h=u+\frac{p}{\rho}=c_{p} T \text { (IDEALGAS) } \\
& p=\rho R T
\end{aligned}
$$

Conservation of Energy

Recall Mass Conservation:

$$
\frac{d M_{s y s}}{d t}=\frac{d}{d t} \int_{C V} \rho p \forall+\int_{C S} \rho(\vec{V} \cdot d \vec{A})
$$

Momentum Conservation:

Mass is carried away by the fluid particle

$$
\left.\left.\sum \vec{F}=\frac{d(\mathrm{Mom})_{s y s}}{d t}=\frac{d}{d t} \int_{C V} \vec{V} d \forall+\int_{c_{c}} \vec{V} \right\rvert\, \vec{V} \cdot d \vec{A}\right)
$$

Momentum is carried away by the fluid particle
Energy Conservation:

$$
\frac{d E_{s y s}}{d t}=\frac{d}{d t} \int_{C V} \rho e d \forall+\int_{C S} \rho e(\vec{V} \cdot d \vec{A})
$$

First Law of Thermodynamics The Energy Equation

- First Law of Thermodynamics for a System:

The time rate of increase of the total stored energy of the system is equal to the sum of the net time rate of energy addition by heat transfer INTO the system and the net time rate of energy addition by work OUT or done by system.
$\frac{D}{D t} \int_{\text {sys }} \rho e \mathrm{~d} \forall=\frac{d Q}{d t}-\frac{d W}{d t}$, or $:$
$\dot{Q}=\dot{W}+\frac{D}{D t} \int_{\text {sys }} \rho e \mathrm{~d} \forall$, where :
$\dot{Q} \equiv \operatorname{HEAT}$ ADDED to system as POSITIVE $(+)$
$\dot{W} \equiv$ WORK DONE by system as POSITIVE $(+)$
$\mathrm{e} \equiv$ system energy per unit mass (internal, kinetic, potential, chemical,other)
$e \equiv u+\frac{V^{2}}{2}+g z, \dot{W}=\dot{W}_{\text {shaft }}+\dot{W}_{\text {pressure }}+\dot{W}_{\text {viscous }}$

First Law of Thermodynamics The Energy Equation

- First Law of Thermodynamics for a System:

The time rate of increase of the total stored energy of the system is equal to the sum of the net time rate of energy addition by heat transfer into the system and the net time rate of energy addition by work transfer into the system
$\dot{Q}_{c s}=\dot{W}_{c s}+\frac{D}{D t} \int_{s y s} \rho e \mathrm{~d} \forall$, where $:$
$\dot{W} \equiv$ WORK DONE by system as POSITIVE $(+)$
$\dot{W}=\dot{W}_{\text {shaft }}+\dot{W}_{\text {pressure }}+\dot{W}_{\text {viscous }}$
$\dot{W}_{\text {shaft }}=$ SHAFT work done by a machine at the CONTROL SURFACE (i.e turbine/pum
$\dot{W}_{\text {pressure }}=$ Rate of work done by pressure forces at Control Surface (Pres x Vel)
$\dot{W}_{\text {pressure }}=\int P(\vec{V} \bullet n) d A$
$\dot{W}_{\text {viscous }}=$ Shear work due to viscous stress at Control Surface
$\dot{W}_{v i s c o u s}=-\int_{c s} \vec{\tau} \bullet \vec{V} d A$; Small except for Boundary Layers close to surface

Conservation of Energy

$$
\begin{aligned}
& \dot{Q}_{c s}-\dot{W}_{c s}=\frac{d E}{d t}=\frac{d}{d t} \int_{C V} \rho e d \forall+\int_{c s} \rho e(\vec{V} \cdot d \vec{A}) \\
& \text { Storage } \\
& T_{\text {shaft }} \times \omega \quad \text { term } \\
& \dot{W}_{c s}=\left(\sum \dot{W}_{\substack{\text { shaff } \\
\text { work }}}\right)_{\text {out }}+\left(\dot{W}_{\text {flow }}^{\text {woork }}\right)_{\text {out }} \\
& \left(\begin{array}{c}
\dot{W}_{\text {flow }}^{\text {woork }}
\end{array}\right)_{\text {out }}=\delta \vec{F} \cdot \vec{V}=p d \vec{A} \cdot \vec{V}=\int p(\vec{V} \cdot d \vec{A}) \\
& \Rightarrow \dot{Q}_{c s}-\dot{W}_{c s}-\int_{c s} p(\vec{V} \cdot d \vec{A})=\frac{d E}{d t}=\frac{d}{d t} \int_{C V} \rho e d \forall+\int_{C S} \rho e(\vec{V} \cdot d \vec{A}) \\
& \Rightarrow \dot{Q}_{c s}-\dot{W}_{c s}=\frac{d}{d t} \int_{C V} \rho e d \forall+\int_{c s} \rho\left(e+\frac{p}{\rho}\right)(\vec{V} \cdot d \vec{A})
\end{aligned}
$$

Conservation of Energy

$$
\dot{Q}_{c s}-\dot{W}_{c s}=\frac{d}{d t} \int_{C V} \rho e d \forall+\int_{C S} \rho\left(e+\frac{p}{\rho}\right)(\vec{V} \cdot d \vec{A})
$$

$$
\begin{aligned}
& \Rightarrow \dot{Q}_{c s}-\dot{W}_{c s}=\frac{d}{d t} \int_{C V} \rho\left(u+g z+\frac{1}{2} V^{2}\right) d \forall+\int_{C S} \rho\left(\frac{p}{\rho}+u+g z+\frac{1}{2} V^{2}\right)(\vec{V} \cdot d \vec{A}) \\
& \text { Net Heat Shaft Storage }
\end{aligned}
$$ Transfer work term

Transport
term
a. Select governing principle
b. Select control volume
c. Assess all the heat transfer and shaft works
d. Assess storage and transport terms
e. Put it altogether
f. Finish calculations for unknown

Conservation of Energy

Things to Keep in Mind with Energy Conservation

- Control Volume Selection is Critical!!!
- Cut a surface - account for energy transfer across surfaces
- More things to know at inlets and outlets
- Transport terms have: $\mathbf{u}, \rho, \mathrm{p}, \mathrm{z}, \mathbf{v}$
- Dot Product - same as before
$\vec{V} \cdot d \vec{A}=($ sign $)|V| d A$
$|\mathrm{V}|$ is total velocity - Scalar!!!

Different forms of Energy Equations

- Easy to remember
"Most basic" Form

STEADY STATE $\rightarrow \frac{d}{d t} \int \rho e \mathrm{~d} \forall \equiv 0$
UNIFORM FLOW $\rightarrow \rho\left(\mathrm{e}+\frac{\mathrm{p}}{\rho}\right) \neq f(d A)$
and $\int \rho(\vec{V} \cdot d \vec{A})=\dot{m}[\cos \theta]$
$\dot{Q}_{\mathrm{cs}}-\dot{W}_{\text {shaft }}=\sum_{\text {out }} \dot{m}\left(\frac{\mathrm{p}}{\rho}+\mathrm{u}+\mathrm{gz}+\frac{1}{2} \mathrm{~V}^{2}\right)-\sum_{i n} \dot{m}\left(\frac{\mathrm{p}}{\rho}+\mathrm{u}+\mathrm{gz}+\frac{1}{2} \mathrm{~V}^{2}\right)$

ENTHALPY

Enthalpy, a property of a thermodynamic system, is the sum of the system's internal energy and the product of its pressure and volume. It is a state function used in many measurements in chemical, biological, and physical systems at a constant pressure, which is conveniently provided by the large ambient atmosphere.

$$
\begin{aligned}
& h=u+\frac{p}{\rho}=u+p v \\
& h\left[\frac{J}{\mathrm{~kg}}\right]=u\left[\frac{J}{\mathrm{~kg}}\right]+\frac{p[\frac{N=\frac{J}{m}}{\rho\left[\frac{\mathrm{~m}^{2}}{\mathrm{~kg}}\right]} \overbrace{\mathrm{m}^{3}}]}{c_{p}\left[\frac{J}{\mathrm{~kg}-K}\right] T[K]} \\
& q[\text { WATTS }]=\dot{m}\left[\frac{\mathrm{~kg}}{\mathrm{~s}}\right] c_{p}\left[\frac{J}{\mathrm{~kg}-K}\right] \Delta T[K]
\end{aligned}
$$

Class 12: Different forms of Energy Equations

COMPLETE FORM[WATTS or ft-lbs/s]
$\dot{Q}_{c s}-\dot{W}_{\text {shaft }}=\sum_{\text {out }} \dot{m}\left(h+\mathrm{gZ}+\frac{1}{2} \mathrm{~V}^{2}\right)-\sum_{\text {in }} \dot{m}\left(h+\mathrm{gZ}+\frac{1}{2} \mathrm{~V}^{2}\right)+\sum_{\text {out }} g\left(h_{L_{\text {N-oovT }}}\right)$

HEAD LOSS FORM: SINGLE INPUT/SINGLE OUTPUT[m or ft]
$\frac{\dot{Q}_{\text {cs }}}{\dot{m} g}+\frac{u_{\text {in }}-u_{\text {out }}}{g}-\frac{\dot{W}_{\text {shaft }}}{\dot{m} g}=\frac{p_{\text {out }}-p_{\text {in }}}{\rho g}+\frac{V_{\text {out }}^{2}-V_{\text {in }}^{2}}{2 g}+z_{\text {out }}-z_{\text {in }}+\left(h_{L_{\text {LN- out }}}\right)$
$h_{l} \equiv$ FLOW HEAD LOSS $=\frac{\dot{Q}_{\text {cs }}}{\dot{m} g}+\frac{u_{\text {in }}-u_{\text {out }}}{g}-\left(h_{L_{\text {m-ort }}}\right)=\frac{\dot{W}_{\text {slaft }}}{\dot{m} g}+\frac{p_{\text {out }}-p_{\text {in }}}{\rho g}+\frac{V_{\text {out }}^{2}-V_{\text {in }}^{2}}{2 g}+z_{\text {out }}-z_{\text {in }}$
Efficiency $(\eta)_{\text {FLOW }}=\frac{\dot{W}_{\text {shaft }}-\gamma \stackrel{\text { Flow Rate }}{Q}\left[\frac{m^{3}}{s}\right]\left\{h_{L_{\text {Flow }}}[m]\right\}}{\dot{W}_{\text {shaft }}}$
$h_{L_{\text {HiOW }}} \rightarrow[m]$

GENERAL ENERGY EQUATION--MULTIPLE I/O STREAMS

$$
\begin{aligned}
& \dot{Q}_{c s}-\dot{W}_{s_{\text {DEELL }}}+\sum_{i n}\left(\dot{m} g\left(\frac{p_{1}}{\gamma}+\frac{u_{1}}{g}+\frac{V_{1}^{2}}{2 g}+z_{1}\right)\right)=\sum_{\text {out }}\left(\dot{m} g\left(\frac{p_{2}}{\gamma}+\frac{u_{2}}{g}+\frac{V_{2}^{2}}{2 g}+z_{2}\right)\right)+\sum H_{L} ; W \text { or } f t-l b f / s ; \\
& \text { LET } \rightarrow
\end{aligned}
$$

$$
\begin{aligned}
& H_{L}[\text { Watts }]=\dot{m}_{B}(k g / s)(g) h_{L_{A-B}}(m)=\dot{m}_{B} g\left(h_{q}+h_{\text {minor }}+h_{\text {miaior }}\right) \rightarrow \text { Total SYSTEM Losses; } \rightarrow \text { OR } \\
& H_{L_{A-B}}[f t-l b f / \mathrm{sec}]=\dot{m}_{B}(s l u g s / s) g h_{A-B}(f t)
\end{aligned}
$$

(one INLET/one EXIT) \rightarrow
Energy Equation \rightarrow "m; ft" $\rightarrow(\div \dot{m} g)$
$\frac{\dot{Q}_{c s}}{\dot{m} g}+\frac{\dot{W}_{P_{\text {ump }} \text { DEAL }}}{\dot{m} g}+\frac{p_{1}}{\gamma}+\frac{u_{1}}{g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{\dot{W}_{\text {Turbine }_{\text {DEEAL }}}}{\dot{m} g}+\frac{p_{2}}{\gamma}+\frac{u_{2}}{g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{q L}(m)$; units $=m$, or, ft
$\mathrm{h}_{p_{\text {IDEAL }}}+h_{1}=h_{T_{\text {IDEAL }}}+h_{2}+h_{q L}$
$h_{\text {minor }}(m)=\sum_{i} K_{i} \frac{V_{i}^{2}}{2 g} ; \rightarrow$ Component Losses
$h_{\text {major }}(m)=\sum_{i} f_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2 g} ; \rightarrow$ Straight Pipe Section Losses
$h_{q L}(m)=\frac{u_{2}}{g}-\frac{u_{1}}{g}-\frac{\dot{Q}_{c s}}{\dot{m} g}+h_{L_{A-\beta}} ; \rightarrow$ Thermal Losses

Different forms of Energy Equations

"SINGLE Input = SINGLE Outputs" Form

$$
\begin{aligned}
& \quad \frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+\overbrace{\text { BERNOULLI }=0}^{\operatorname{Losses}} \\
& \text { are ZERO } \\
& \text { meters or feet }
\end{aligned}
$$

- It's Bernoulli if losses are ZERO
- Units of each term are meters or feet
-Fluid losses show up in terms of "heat"

Head loss represents reversible \& irreversible processes.

Energy Equation Example \#1

Problem \#1: Air [R=1716, cp=6003ft.lbf/(slug. ${ }^{.}$R)] flows steadily, as shown in Figure below, through a turbine that produces 700 hp . For the inlet and exit conditions shown, estimate (a) the exit velocity V_{2} and (b) the heat transferred $\dot{\text { Q in }} \mathrm{Btu} / \mathrm{h}$.

Energy Equation Example

Solution: The conservation of energy equation -
$\dot{Q}_{i n}-\dot{W}_{\text {shaft }}=\dot{m}\left[\left(\mathrm{u}_{2}-\mathrm{u}_{1}\right)+\frac{1}{2}\left(V_{2}^{2}-V_{1}^{1}\right)+g\left(z_{2}-z_{1}\right)+\left(\frac{p_{2}-p_{1}}{\rho}\right)\right]$
$\Rightarrow \dot{Q}_{\text {in }}-\dot{W}_{\text {shaft }}=\dot{m}\left[\left(\mathrm{u}_{2}+\frac{p_{2}}{\rho}\right)+\frac{1}{2} V_{2}^{2}-\left(\mathrm{u}_{1}+\frac{p_{1}}{\rho}\right)-\frac{1}{2} V_{1}^{2}\right] ; z_{2}=z_{1} ; h=u+\frac{P}{\rho}=c_{p} T ;($ IDEAL GAS $)$
$\Rightarrow \dot{Q}_{\text {in }}-\dot{W}_{\text {shaft }}=\dot{m}\left[c_{p} T_{2}+\frac{1}{2} V_{2}^{2}-c_{p} T_{1}-\frac{1}{2} V_{1}^{2}\right] ;$ IDEAL GAS
Now determine the air density at the inlet and at the exit
$\rho_{1}=\frac{P_{1}}{R T_{1}}=\frac{\left(150 \mathrm{lb} / \mathrm{in}^{2}\right)\left(144 \mathrm{in}^{2} / \mathrm{ft}^{2}\right)}{\left(1716 \frac{\mathrm{ft}-\mathrm{lb}}{\text { slugs }-R^{0}}\right)(460+300)^{\circ} R}=0.0166$ slugs $/ \mathrm{ft}^{3} \quad \rho_{2}=\frac{P_{2}}{R T_{2}}=\frac{\left(40 \mathrm{lb} / \mathrm{in}^{2}\right)\left(144 \mathrm{in}^{2} / 1 \mathrm{ft} \mathrm{t}^{2}\right)}{(1716)(460+35)^{\circ} R}=0.00679 \mathrm{slugs} / \mathrm{ft}^{3}$
Mass flow rate

$$
\begin{aligned}
& \dot{m}_{1}=\rho_{1} V_{1} A_{1}=\left(0.0166 \text { slugs } / f t^{3}\right)(100 \mathrm{ft} / \mathrm{s})\left(\frac{\pi}{4}\left(\frac{6 \text { in }}{12 \text { in }} \mathrm{ft}\right)^{2}\right)=0.325 \text { slugs } / \mathrm{s} \\
& \text { Now } \quad \begin{aligned}
\dot{m}_{1} & =\dot{m}_{2}=\rho_{2} V_{2} A_{2}=\left(0.00679 \text { slugs } / f t^{3}\right)\left(V_{2} f t / s\right)\left(\frac{\pi}{4}\left(\frac{6 i n}{12 i n} f t\right)^{2}\right)=0.325 \text { slugs } / \mathrm{s} \\
\Rightarrow & V_{2}
\end{aligned}=244 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

Energy Equation Example

Now the conservation of energy equation -
$\dot{Q}_{i n}-\dot{W}_{\text {shaft }}=\dot{m}\left[c_{p} T_{2}+\frac{1}{2} V_{2}^{2}-c_{p} T_{1}-\frac{1}{2} V_{1}^{2}\right] ; h=u+\frac{p}{\rho}=c_{p} T$
$\Rightarrow \dot{Q}_{\text {in }}=(700 \mathrm{hp})\left(550 \frac{\mathrm{ft.lb} / \mathrm{s}}{\mathrm{hp}}\right)+0.325($ slugs $/ \mathrm{s})\left[\begin{array}{l}\left(6003 \mathrm{ft.lb} /\left(\text { slugs. }{ }^{\circ} R\right)\right)(460+35)^{o} R+\frac{1}{2}(244 \mathrm{ft} / \mathrm{s})^{2} \\ -\left(6003 \mathrm{ft} . \mathrm{lb} /\left(\text { slugs. }^{\circ} R\right)\right)(460+300)^{o} R-\frac{1}{2}(100 \mathrm{ft} / \mathrm{s})^{2}\end{array}\right]$
$\Rightarrow \dot{Q}_{i n}=385,000 \mathrm{ft.lb} / \mathrm{s}+-1,566,027$ ft.lb/s
$\dot{Q}_{i n}=-1,181,027 \mathrm{ft.lb} / \mathrm{s}=(-1,181,027 \mathrm{ft.lb} / \mathrm{s})\left(\frac{3600 \frac{s}{h}}{778.2(\text { ft.lb/Btu) }}\right) ;\left(\right.$ conversion $\left.\frac{778.2 \mathrm{ft.lb}}{B T U}\right)$
$\Rightarrow \dot{Q}_{i n}=-5,463,502 \mathrm{Btu} / \mathrm{h}, \longleftarrow$
The negative sign indicates that heat transfer is a loss from the control surface.
$\eta_{\text {thermal }}=\frac{W_{\text {net }}}{Q_{H}} \frac{(700 h p)\left(550 \frac{f t . l b / s}{h p}\right)\left(\frac{3600 \frac{s}{h}}{778.2(f t . l b / B t u)}\right)}{5,463,502 \mathrm{Btu} / \mathrm{h}}=33 \%$

Energy Equation Example \#2

Problem 5.113: Water is supplied at $150 \mathrm{ft}^{3} / \mathrm{s}$ and 60 psi to a hydraulic turbine through a 3ft inside diameter inlet pipe as shown in the Figure below. The turbine discharge pipe has a 4 ft inside diameter. The static pressure at section (2), 10ft below the turbine inlet, is 10 in Hg vacuum. If the turbine develops 2500 hp , determine the power loss between section (1) and (2).
Solution: For flow between section (1) and (2), the energy equation can be written in loss form as

$$
\frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\frac{\dot{W}_{\text {s }}}{\dot{m} g}+\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+\text { Power Losses }
$$

$$
\text { - power loss }=\dot{m}\left[\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)+g\left(z_{2}-z_{1}\right)+\left(\frac{p_{2}-p_{1}}{\rho}\right)\right]+\dot{W}_{\text {shaft }}
$$

$$
=\rho \mathrm{Q}\left[\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)+g\left(z_{2}-z_{1}\right)+\left(\frac{p_{2}-p_{1}}{\rho}\right)\right]+\dot{W}_{\text {shaft }}
$$

From given data

$$
p_{2}=-10 \text { in of } H g=(-10 i n) \frac{14.6558 p \operatorname{sia}}{29.9^{\prime \prime} H g} \frac{144 i n^{2}}{f t^{2}}=-705.83 \mathrm{lb} / f t^{2}
$$

Energy Equation Example

Also $\quad V_{1}=\frac{Q}{A_{1}}=\frac{Q}{\pi D_{1}^{2} / 4}=\frac{\left(150 f t^{3} / \mathrm{s}\right)}{\pi(3 f t)^{2} / 4}=21.22 \mathrm{ft} / \mathrm{s}$

$$
\begin{aligned}
& \text { Now } \\
& \dot{m}_{1}=\dot{m}_{2} \\
& \Rightarrow Q_{1}=Q_{2} \\
& \frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\dot{W}_{s}+\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+\text { Losses } \\
& \Rightarrow V_{2}=V_{1} \frac{A_{1}}{A_{2}}=V_{1} \frac{D_{1}^{2}}{D_{2}^{2}}=(21.22 \mathrm{ft} / \mathrm{s}) \frac{(3 \mathrm{ft})^{2}}{(4 \mathrm{ft})^{2}}=11.94 \mathrm{ft} / \mathrm{s} \\
& \text { - power loss }=\rho \mathrm{Q}\left[\frac{1}{2}\left(V_{2}^{2}-V_{1}^{2}\right)+g\left(z_{2}-z_{1}\right)+\left(\frac{p_{2}-p_{1}}{\rho}\right)\right]+\dot{W}_{\text {slaft }} \\
& =\frac{\left(1.94 \text { slugs } / \mathrm{ft}^{3}\right)\left(150 f t^{3} / \mathrm{s}\right)}{550 \mathrm{ft.lb} / \mathrm{s}}\left[\begin{array}{l}
\frac{11.94^{2}-21.22^{2}}{2} \frac{f t^{2}}{s^{2}} \\
-\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)(10 \mathrm{ft}) \\
\frac{-\left(705.83 \mathrm{lb} / \mathrm{ft}^{2}\right)\left(-60 \mathrm{lb} / \mathrm{in}^{2} \bullet 144 \mathrm{in}^{2} / f \mathrm{ft}^{2}\right)}{\left(1.94 \mathrm{slugs}^{2} / \mathrm{ft}^{3}\right)}
\end{array}\right]+2500 \mathrm{hp}
\end{aligned}
$$

$\Rightarrow-$ power loss $=-301 \mathrm{hp}$
$\Rightarrow \eta=\frac{W_{\text {actual }}}{W_{\text {ideal }}}=\frac{W_{\text {ideal }}-\text { Loss }}{W_{\text {ideal }}}=\frac{2500-301}{2500}=87 \%$

Systems w/Turbines and Pumps (SINGLE INPUT/OUTPUT)

- When fluid passes through a turbine, the fluid system is DOING WORK (SHAFT) on the surroundings.
- When fluid passes through a pump, the pump DOES WORK on the fluid.

$$
h_{L_{\text {FLOW }}}[m]=-\left[\frac{\dot{Q}_{c s}}{\dot{m} g}+\frac{u_{i n}-u_{\text {out }}}{g}\right]+h_{l} h_{i n}=\frac{p_{i n}}{\gamma}+\frac{V_{i n}^{2}}{2 g}+z_{\text {in }}
$$

$$
\begin{aligned}
& \frac{\dot{Q}_{c s}}{\dot{m} g}+\frac{u_{\text {in }}-u_{\text {out }}}{g}-\frac{\dot{W}_{\text {shaf }}^{\text {test }}}{}=\frac{p_{\text {out }}-p_{\text {in }}}{\rho g}+\frac{V_{\text {out }}^{2}-V_{\text {in }}^{2}}{2 g}+z_{\text {out }}-z_{\text {in }}+\frac{H_{l}}{\dot{m g} g} \\
& \frac{\dot{W}_{\text {shaff }_{\text {DeEL }}}}{\dot{m} g}=\frac{\dot{W}_{\text {turbine }}^{\text {DELU }}}{}-\dot{W}_{\text {pump }}^{\text {DeELU }}, ~ h_{l}[m]=\frac{H_{l}[\text { power }]}{\dot{m} g} \\
& \frac{\dot{Q}_{\text {cs }}}{\dot{m} g}+\frac{u_{\text {in }}-u_{\text {out }}}{g}+\frac{\dot{W}_{\text {Pump }_{\text {wete }}}}{\dot{m} g}=\frac{\dot{W}_{\text {Turbine }}^{\text {eout }}}{}+\frac{p_{\text {out }}-p_{\text {in }}}{\rho g}+\frac{V_{\text {out }}^{2}-V_{\text {in }}^{2}}{2 g}+z_{\text {out }}-z_{\text {in }}+h_{l} \\
& h_{P_{\text {DeEA }}}=h_{T \text { DEAL }}+h_{\text {out }}-h_{\text {in }}+h_{L_{\text {frow }}}(\text { head }-f t: m)
\end{aligned}
$$

$$
\begin{aligned}
& h_{\text {out }}=\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}
\end{aligned}
$$

Isentropic Efficiency (2 ${ }^{\text {nd }}$ Law)

Mass, Momentum and Energy

- Water flows steadily through an end cap and exits as a free jet and contains a filter. The axial force to hold end cap stationary is 60 lb .
- Pipe Weight =2001b
- Flow Volume = 20ft3

Determine the head loss.

- Mass (change in diameter)

- Energy (flow loss--filter)
- Momentum (external forces)

ENERGY/MOMENTUM/MASS

$$
\begin{aligned}
& \begin{aligned}
& \frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+\text { Losses } \\
& h_{l}=\frac{p_{\text {in }}-p_{\text {out }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} ; p_{\text {out }}=0 ; \text { Free Jet } \\
&=\frac{p_{\text {in }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} \\
& \text { Momentum } \\
& \sum F_{y}=\frac{\partial M<v}{d t}+\sum_{\text {out }}\left(v_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(v_{\text {in }} \pm\right) \dot{m}
\end{aligned} .
\end{aligned}
$$

$$
\uparrow \sum F_{y}=-R y+p_{\text {in }} A_{\text {in }}+p_{\text {out }} A_{\text {out }} \sin \Theta-W=0+\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m}
$$

$W=$ Weight of pipe and weight of fluid
$\mathrm{W}=200 \mathrm{lbf}+20 f t^{3} \cdot \gamma_{f} \frac{l b f}{f t^{3}}=200+20 * 62.4=1448 \mathrm{lbf}$
Mass Cons

$$
V_{\text {out }}=\frac{A_{\text {in }}}{A_{\text {out }}} V_{\text {in }}=\frac{0.12 \mathrm{ft}^{2}}{0.10 \mathrm{ft}^{2}} 10 \frac{\mathrm{ft}}{\mathrm{~s}}=12 \frac{\mathrm{ft}}{\mathrm{~s}}
$$

ENERGY/MOMENTUM/MASS

$$
\left.\begin{array}{rl}
h_{l}= & \frac{p_{\text {in }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} \\
& \uparrow \sum_{\text {in }}^{2}=-R y+p_{\text {in }} A_{\text {in }}-W=0+\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m} \\
p_{\text {in }}= & \frac{\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m}+R y+W}{A_{\text {in }}} \\
V_{\text {out }}= & \frac{A_{\text {in }}}{A_{\text {out }}} V_{\text {in }} \rightarrow \text { MASS CONS } \\
p_{\text {in }}= & \frac{\left(-\frac{A_{\text {in }}}{A_{\text {out }}} V_{\text {in }} \sin \Theta-V_{\text {in }}\right) \rho A_{\text {in }} V_{\text {in }}+R y+W}{A_{\text {in }}} \\
= & \frac{R y+W-\rho A_{\text {in }} V_{\text {in }}^{2}\left(\frac{A_{\text {in }}}{A_{\text {out }}} \sin \Theta+1\right)}{A_{\text {in }}} \\
& 60[l b f]+W[l b f]-1.94 \frac{s l u g s}{f t^{3}} 0.12 f t^{2} 100 \frac{f t^{2}}{s^{2}}\left(\frac{0.12}{0.10} \sin 30+1\right)\left[\frac{s l u g s-f t}{s^{2}}=\frac{\frac{l b f-s^{2}}{f t}-f t}{s^{2}}\right] \\
& =12\left[f t^{2}\right] \\
p_{\text {in }}= & 189.6 \frac{l b_{f}}{f t^{2}}+\frac{W l b_{f}}{0.12 f t^{2}}
\end{array}\right]
$$

$$
\begin{aligned}
p_{\text {in }} & =189.6 \frac{l b_{f}}{f t^{2}}+\frac{W l b_{f}}{0.12 f t^{2}} \\
h_{l} & =\frac{p_{\text {in }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} \\
& =\frac{189.6 \frac{l b_{f}}{f t^{2}}+\frac{W l b_{f}}{0.12 f t^{2}}}{62.4 \frac{l b_{f}}{f t^{3}}}+\frac{V_{\text {in }}^{2}\left(1-\left(\frac{A_{\text {in }}}{A_{\text {out }}}\right)^{2}\right)}{2 \times 32.2 \frac{f t}{s^{2}}} \\
& =2.35 f t+\frac{\frac{W l b_{f}}{0.12 f t^{2}}}{62.4 \frac{l b_{f}}{f t^{3}}} ; \text { ENERGY LOSS }
\end{aligned}
$$

FLOW POWER LOST DUE TO " h_{L} "

$$
\begin{aligned}
\dot{P}_{\text {LOST }}[h p] & =\dot{m}\left[\frac{s l u g s}{s}\right] g\left[\frac{f t}{s^{2}}\right] h_{L}[f t] \\
& =\dot{m}\left[\frac{s l u g s}{s}=\frac{\frac{l b f-s^{2}}{f t}}{s}\right] g\left[\frac{f t}{s^{2}}\right] h_{L}[f t] \\
& =\dot{m}\left[\frac{s l u g s}{s}\right] g\left[\frac{f t}{s^{2}}\right] h_{L}[f t] \rightarrow[l b f-f t / s] \bullet \frac{1 h p}{550} l b f-f t / s
\end{aligned}
$$

$$
\begin{aligned}
\dot{P}_{L O S T} & {[W] } \\
& =\dot{m}\left[\frac{k g}{s}\right] g\left[\frac{m}{s^{2}}\right] h_{L}[m] \\
\frac{k g-m}{s^{2}} & \equiv N
\end{aligned}
$$

$$
\dot{P}_{L O S T}[W]=\dot{m}\left[\frac{k g}{s}\right] g\left[\frac{m}{s^{2}}\right] h_{L}[m] \rightarrow \frac{N-m}{s}
$$

$$
N-m \equiv J
$$

$$
J / s \equiv W
$$

PARAMETRIC MODELLING "The Language of Engineers"

Water, flows steadily in a pipe and exits through an end cap that contains a filter as shown.

The pipe weight is $200 \mathrm{lb}_{f}$ and the flow volume is 20 ft^{3}. The axial component, Ry, is 601b, and the flow head loss is $15 \mathrm{ft}-\mathrm{lb}_{\mathrm{f}} /$ slug

$$
\left(1 \text { slug }=\frac{l b_{f}-s^{2}}{f t}\right)
$$

-What is the magnitude and direction of the total anchoring forces (lbf).

- Provide a plot with derivation for Rx vs Theta, for theta going from 30° to 90° in increments of 5 degrees.

FOUR Equations, FOUR Unknows, $\mathrm{P}_{\text {in }}, \mathrm{P}_{\text {out }}, \mathrm{R}_{\mathrm{x}}, \mathrm{V}_{\text {out }}$. LAWS:
Momentum X
Momentum Y
Mass Conservation
Energy Conservation

ENERGY

Energy \rightarrow EQUATION 1

$$
h_{l}=15 \frac{f t-l b f}{\operatorname{slug}}=\frac{15 \frac{f t-l b f}{\operatorname{slug}}}{32.2 f t / s^{2}}=\frac{15 \frac{f t-l b f}{l b f-\mathrm{sec}^{2}}}{\frac{f t}{32.2 f t / s^{2}}}=0.46 f t
$$

$$
\frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+\text { Losses }
$$

$$
h_{l}=\frac{p_{\text {in }}-p_{\text {out }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} ; p_{\text {out }} \neq \text { Free Jet }
$$

$$
\frac{\mathrm{p}_{\text {in }}}{\gamma}-\frac{p_{\text {out }}}{\gamma}=\left[-\left(\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g}\right)+h_{l}\right]
$$

MOMENTUM Y/MASS

$$
\begin{aligned}
& \text { Momentum } \rightarrow \text { EQUATION } 2 \\
& \sum F_{y}=\frac{\partial M / t}{d t}+\sum_{\text {out }}\left(v_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(v_{\text {in }} \pm\right) \dot{m}
\end{aligned}
$$

$\uparrow \sum F_{y}=-R y+p_{\text {in }} A_{\text {in }}+p_{\text {out }} A_{\text {out }} \sin \Theta-W=\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m}$
$W=$ Weight of pipe and weight of fluid
$\mathrm{W}=200 \mathrm{lbf}+20 f t^{3} \cdot \gamma_{f} \frac{l b f}{f t^{3}}=200+20 * 62.4=1448 \mathrm{lbf}$
$\dot{m}=\rho Q$
$M A S S \rightarrow$
$V_{\text {out }}=\frac{A_{\text {in }}}{A_{\text {out }}} V_{\text {in }}=\frac{0.12 \mathrm{ft}^{2}}{0.10 \mathrm{ft}^{2}} 10 \frac{\mathrm{ft}}{\mathrm{s}}=12 \frac{\mathrm{ft}}{\mathrm{s}}$

MOMENTUM X

Momentum \rightarrow EQUATION 3

$\sum F_{x}=\frac{d \mu}{d t}+\sum_{\text {out }}\left(u_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(u_{m i} \pm\right) \dot{m}$
$\rightarrow \sum F_{x}=-R x+p_{\text {out }} A_{\text {out }} \cos \Theta=\left(-V_{\text {out }} \cos \Theta\right) \dot{m}+0$

Three Equations, Three Unknows, Pin, Pout, Rx.

$h_{l}=15 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{slug}}=\frac{15 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{slug}}}{32.2 \mathrm{ft} / \mathrm{s}^{2}}=\frac{15 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{lbf}-\mathrm{sec}^{2}}}{\mathrm{ft}} \mathrm{32.2ft/s}^{2}=0.46 \mathrm{ft}$
$\frac{p_{\text {in }}}{\gamma}+\frac{V_{\text {in }}^{2}}{2 g}+z_{\text {in }}=\frac{p_{\text {out }}}{\gamma}+\frac{V_{\text {out }}^{2}}{2 g}+z_{\text {out }}+$ Losses
$h_{l}=\frac{p_{\text {in }}-p_{\text {out }}}{\rho g}+\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g} ; p_{\text {out }} \neq$ Free Jet
$\frac{\mathrm{p}_{\text {in }}}{\gamma}-\frac{p_{\text {out }}}{\gamma}=\left[-\left(\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g}\right)+h_{l}\right]$
Momentum \rightarrow EQUATION 2
$\sum F_{y}=\frac{\partial \mu t}{d t}+\sum_{\text {out }}\left(v_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(v_{\text {in }} \pm\right) \dot{m}$
$\uparrow \sum F_{y}=-R y+p_{\text {in }} A_{\text {in }}+p_{\text {out }} A_{\text {out }} \sin \Theta-W=\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m}$
$W=$ Weight of pipe and weight of fluid
$\mathrm{W}=200 \mathrm{lbf}+20 f t^{3} \cdot \gamma_{f} \frac{l b f}{f t^{3}}=200+20 * 62.4=1448 \mathrm{lbf}$
$\dot{m}=\rho Q$
Mass
$V_{\text {out }}=\frac{A_{\text {in }}}{A_{\text {out }}} V_{\text {in }}=\frac{0.12 \mathrm{ft}^{2}}{0.10 \mathrm{ft}^{2}} 10 \frac{\mathrm{ft}}{\mathrm{s}}=12 \frac{\mathrm{ft}}{\mathrm{s}}$

Momentum \rightarrow EQUATION 3
$\sum F_{x}=\frac{X M / V}{d t}+\sum_{\text {out }}\left(u_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(u_{\text {in }} \pm\right) \dot{m}$
$\rightarrow \sum F_{x}=-R x+p_{\text {out }} A_{\text {out }} \cos \Theta=\left(-V_{\text {out }} \cos \Theta\right) \dot{m}+0$
Three Equations, Three Unknows, Pin, Pout, Rx.

EQUATION SUMMARY

Energy \rightarrow EQUATION 1

$$
\frac{\mathrm{p}_{\text {in }}}{\gamma}-\frac{p_{\text {out }}}{\gamma}=\left[-\left(\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g}\right)+h_{l}\right]
$$

Momentum \rightarrow EQUATION 2
$p_{\text {in }} A_{\text {in }}+p_{\text {out }} A_{\text {out }} \sin \Theta-W=R y+\left(-V_{\text {out }} \sin \Theta-V_{\text {in }}\right) \dot{m}$

Momentum \rightarrow EQUATION 3
$-R x+p_{\text {out }} A_{\text {out }} \cos \Theta=\left(-V_{\text {out }} \cos \Theta\right) \dot{m}+0$

MATRIX FORMAT

$\left[\begin{array}{lll}a_{11} d o f_{1} & a_{12} d o f_{2} & a_{13} d o f_{3} \\ a_{21} d o f_{1} & a_{22} d o f_{2} & a_{23} d o f_{3} \\ a_{31} d o f_{1} & a_{32} d o f_{2} & a_{33} d o f_{3}\end{array}\right]\left\{\begin{array}{l}d o f_{1} \\ d o f_{2} \\ d o f_{3}\end{array}\right\}=\left\{\begin{array}{l}\text { Force }_{1} \\ \text { Force }_{2} \\ \text { Force }_{3}\end{array}\right\}$
\rightarrow EQUATION 1 EXAMPLE
$\frac{p_{\text {in }}}{\gamma}-\frac{p_{\text {out }}}{\gamma}+0=h_{l}-\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g}$

$$
\begin{aligned}
{[A]\{x\} } & =\{b\} \\
\{x\} & =[A]^{-1}\{b\}
\end{aligned}
$$

$$
\left[\begin{array}{ccc}
\frac{1}{\gamma} & -\frac{1}{\gamma} & 0
\end{array}\right]\left\{\begin{array}{c}
p_{\text {in }} \\
p_{\text {out }} \\
R_{x}
\end{array}\right\}=\left\{\text { Force }_{1}=h_{l}-\frac{V_{\text {in }}^{2}-V_{\text {out }}^{2}}{2 g}\right\}
$$

NUMERICAL METHODS

ELEGANT SOLUTION

MATRIX SOLUTION \rightarrow NUMERICAL METHODS
$[A]\{x\}=\{b\}$
$\{x\}=[A]^{-1}\{b\}$
$\rightarrow\left\{\begin{array}{l}\text { EQUATION 1 } \\ \text { EQUATION 2 } \\ \text { EQUATION 3 }\end{array}\right\}=\left[\begin{array}{ccc}\frac{1}{\gamma} & \frac{-1}{\gamma} & 0 \\ A_{\text {in }} & A_{\text {out }} \sin \Theta & 0 \\ 0 & A_{\text {out }} \cos \Theta & -1\end{array}\right]\left\{\begin{array}{c}P_{\text {in }} \\ P_{\text {out }} \\ R_{x}\end{array}\right\}=\left\{\begin{array}{c}h_{l}+\left(\frac{-V_{\text {in }}^{2}+V_{\text {out }}^{2}}{2 g}\right) \\ R_{y}+W-\dot{m}\left(V_{\text {out }} \sin \Theta+V_{\text {in }}\right) \\ -\dot{m}\left(V_{\text {out }} \cos \Theta\right)\end{array}\right\}$

SHHURLENEGES

Angle (degrees)	Angle (radians)		Pin (lbf/ft^2)	$\begin{aligned} & \text { Pout } \\ & (\mathrm{lbf} / \mathrm{ft} \wedge 2) \end{aligned}$	Rx (lb)
30	0.52		395.12	352.49	54.69
40	0.70		339.58	296.94	44.12
50	0.87		298.12	255.49	34.36
60	1.05		268.13	225.49	25.23
70	1.22		247.82	205.19	16.56
80	1.40		236.06	193.43	8.20
90	1.57		232.21	189.57	0.00
Given Values					
Vin	10				
Vout	12				
Ain	0.12				
Aout	0.1				
Ry	60				
үf	62.4	lbf/			
Weight	200				
V	20				
g	32.2				

Reaction X vs. Theta

Pressure Out vs. Theta

Energy/Momentum/Mass

- The large water tank is evacuated by a pump with a volume flow rate of $5 \mathrm{ft} 3 / \mathrm{sec}$ with a pump efficiency of 85%.
- Flow Head Loss $=3.0 \frac{V_{j e t}^{2}}{2 g}$
- Find pump work and spring deflection with linear spring deflection K=200lbf/ft.

$$
\dot{W}_{p_{\text {DEEL }}}=\dot{m} g h_{p_{D E E L}}=\rho(A V) g h_{p_{D E L I}}=\gamma Q h_{p_{D E E L}}
$$

$\eta_{p}=\frac{W_{p_{\text {DEELI }}}}{W_{P_{\text {ActuIII }}}}$
$W_{P_{\text {AcTVAL }}}=\frac{W_{p_{\text {DEALL }}}}{\eta_{p}}=\frac{\gamma Q h_{p_{\text {DEAL }}}}{\eta_{p}}$

Solution

Mass
$V_{\text {jet }}=\frac{Q}{\mathrm{~A}}=25.5 \frac{\mathrm{ft}}{\mathrm{s}}$

Energy

$$
\begin{aligned}
& p_{1}=p_{2}=V_{1}=0, z_{1}=3, z_{2}=1 ; \\
& h_{p_{\text {DEEAL }}}=\frac{V_{\text {jet }}^{2}}{2 g}-2+h_{l}=\frac{V_{\text {jet }}^{2}}{2 g}(1+3)-2=38.4 f t \\
& W_{p_{\text {ACTUAL }}}=\frac{\gamma Q h_{p_{\text {DEELL }}}}{\eta_{p}}=62.4 \frac{l b f}{f t^{3}} \bullet 5 \frac{f t^{3}}{s} \bullet 38.4 f t \bullet \frac{1 \mathrm{HP}}{550 \frac{f t-l b f}{s}} \frac{1}{\eta_{p}}=25.6 \mathrm{HP}
\end{aligned}
$$

Momemntum
$\sum \vec{F}_{x}=\frac{d M_{C V}}{d t}+\sum_{\text {out }}\left(u_{\text {out }} \pm\right) \dot{m}-\sum_{\text {in }}\left(u_{\text {in }} \pm\right) \dot{m}$
$\sum \vec{F}_{x}=K \Delta=0+V_{j e t} \cos \theta \dot{m}-0$
$\Delta=\frac{V_{j e t} \cos \theta \dot{m}}{K}=\frac{\rho Q^{2} \cos \theta}{A_{j e t} K}=1.07 \mathrm{ft}$

How to include static friction between wheels and ground?
i.e.
$\mathrm{F}_{n}=\mu_{s} N \rightarrow$ always opposite to motion $\mathrm{N}=$ Normal Force

EXITENDED MODEL

W/FIRICTION

- Identify Points Along Streamline
- Manometry
- Conservation of Energy + Mass
- Conservation of Momentum
- Friction Loss
- Control Volume
- Coordinate Sytem
- Free Body Diagram
- Combine if Required

Seek Wisdom Do You? Do, or do not, there is no try.

Build Parametric Model to Vary Angle and Friction Coefficient

A large water tank of diameter $D=10^{\prime}$ and height $H=5^{\prime}$ is evacuated by a pump (efficiency of $\eta_{p}=80 \%$). The flow head loss through the pipe jet at the exit is, the spring force is 300 lbf , and the coefficient of friction between the wheels and the surface is 0.3 . Jet flow loss is $5.0 \frac{V_{j}^{2}}{2 g}$
Apply Conservation of Energy
$\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+z_{1}+h_{p_{\text {IDEAL }}}=h_{\text {IDEA }}+\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{L}$
$P_{1}=P_{2}=V_{1}=0$
$h_{p_{\text {IDEAL }}}=\left(\frac{V_{2}^{2}}{2 g}+z_{2}-z_{1}+h_{L}\right)$
$h_{p_{\text {IDEAL }}}=\left(\frac{V_{2}^{2}}{2 g}-2.0+5.0 \frac{V_{2}^{2}}{2 g}\right)=\left(6.0 \frac{V_{2}^{2}}{2 g}-2.0\right)$
$\dot{W}_{p_{\text {ACTUAL }}}=\frac{\gamma_{f} Q h_{p_{\text {IDEAL }}}}{\eta_{p}}=\frac{\gamma_{f}\left(V_{2} A\right) h_{p_{\text {IDEAL }}}}{\eta_{p}}$

Apply Momentum

$\overrightarrow{F_{x}}=\frac{\partial M / V}{d t}+\sum_{\text {out }}\left(u_{\text {out }} \pm\right) \dot{m}_{\text {out }}-\sum_{\text {in }}\left(u_{\text {in }} \pm\right) \dot{m}_{\text {in }}$
$\sum F_{x}=F_{s}+F_{f}=0+\left(V_{2} \cos \theta+\right) \dot{m}_{2}-0$
$\dot{m}_{2}=\rho A_{2} V_{2}$
$\sum F_{x}=F_{s}+F_{f}=\rho A V_{2}^{2} \cos \theta$
$\sum F_{x}=F_{s}+\mu_{s} N=\rho A V_{2}^{2} \cos \theta$
$\uparrow \sum F_{y}=\frac{\lambda M / V}{d t}+\sum_{\text {out }}\left(v_{\text {out }} \pm\right) \dot{m}_{\text {out }}-\sum_{\text {in }}\left(v_{\text {in }} \pm\right) \dot{m}_{\text {in }}$
$\uparrow \sum F_{y}=N-m g=0+\left(V_{2} \sin \theta+\right) \dot{m}_{2}-0$

$\uparrow \sum F_{y}=N-m g=\rho A V_{2}^{2} \sin \theta$
$N=m g+\rho A V_{2}^{2} \sin \theta$

COMBINE

$$
\begin{aligned}
& \rightarrow \sum F_{x}=F_{s}+\mu_{s} N=\rho A V_{2}^{2} \cos \theta:(1) \\
& \uparrow \sum F_{y}=N-m g=\rho A V_{2}^{2} \sin \theta:(2) \\
& N=m g+\rho A V_{2}^{2} \sin \theta \rightarrow(1) \\
& F_{s}+\mu_{s}\left(m g+\rho A V_{2}^{2} \sin \theta\right)=\rho A V_{2}^{2} \cos \theta \\
& F_{s}+\mu_{s} m g=\rho A V_{2}^{2}\left(\cos \theta-\mu_{s} \sin \theta\right)
\end{aligned}
$$

Solve for V_{2}

$$
\begin{aligned}
& \mathrm{V}_{2}=\left[\frac{F_{s}+\mu_{s}(m g)}{\rho A\left(\cos \theta-\mu_{s} \sin \theta\right)}\right]^{1 / 2} \\
& \mathrm{~V}_{2}=\left[\frac{F_{s}+\mu_{s}\left(\gamma_{f} \forall_{v o l}\right)}{\rho A\left(\cos \theta-\mu_{s} \sin \theta\right)}\right]^{1 / 2}
\end{aligned}
$$

$\left.\begin{array}{c|c|c|c|c|} & \mathrm{ft} / \mathrm{s} & \mathrm{ft} 3 / \mathrm{s} & \mathrm{ft} & \mathrm{ft}-\mathrm{lbf} / \mathrm{s} \\ \hline & \mathrm{HP} \\ \hline \text { Theta } & \mathrm{V} 2 & \mathrm{Q} & \mathrm{hp} & \mathrm{Wp}\end{array}\right] \mathrm{Wp}$.

Analysis:

Large pumping power is required due to large external reaction force of 300lbs combined with the wheel friction force which is a function of coefficient of friction and water volume.

The X momentum jet exit force must balance the X spring and friction forces. As theta increases, the X momentum force must decrease (via $\cos \theta$), as such the jet velocity must increase to compensate (via V^{2}). And therefore, the pumping power must also increase with theta.

Learning points from parametric analysis and thought.

Parametric Model: Tank Jet

Theta vs Volume Flow rate w/Wheel Friction Spring Force $=300 \mathrm{lbs}$

Parametric Model: Tank Jet

Truck delivers $\mathrm{Q}=1.5 \mathrm{cfs}$ to an elevation of 60 ft above hydrant. The pressure in $4^{\prime \prime}$ Diameter outlet is 10 psi . If flow losses are small, find pump power input that must be added to the water if pump eff $=80 \%$.

Fluid Fundamentals
Mass Conservation: $\mathrm{Q}=\mathrm{VA}$
Must apply energy equation due to work/power along streamline.
Energy Equation (Single Input/Output)

$\dot{W}_{\text {Pump }_{\text {DELU }}}=h_{P_{\text {DELL }}} \dot{\operatorname{m}} g, \dot{W}_{\text {Turbine }_{\text {DEELI }}}=h_{T \text { IDEAL }} \dot{n} g$
$h_{\text {out }}=\frac{\chi_{\text {out }}}{\gamma}+\frac{V_{\text {olt }}^{2}}{2 g}+z_{\text {out }}$
$h_{i n}=\frac{p_{\text {in }}}{\gamma}+\frac{V_{i n}^{2}}{2 g}+z_{\text {in }}$
$h_{P_{\text {Detu }}}=z_{\text {out }}-z_{\text {in }}-\frac{p_{\text {in }}}{\gamma}-\frac{V_{\text {in }}^{2}}{2 g}$
$=60 f t-\frac{10 p s i \frac{144 f t^{2}}{i 2^{2}}}{62.4 \frac{b t}{f^{2}}}-\frac{\left(\frac{Q}{A_{i n}}\right)^{2}}{2 g}=32.3 f t \rightarrow$ input pump work

$$
\begin{aligned}
& =\frac{\dot{W}_{p_{\text {DELU-N }}}}{\eta_{\text {Pump }}}=\frac{\dot{m} g h_{p_{\text {DEELU }}}=\gamma_{\text {H20 }} Q h_{p_{\text {DELL }}}}{\eta_{\text {Pump }}} \\
& =\frac{62.4 \frac{\mathrm{lbf}}{\mathrm{ft}^{3}} 1.5 \frac{\mathrm{ft}^{3}}{\mathrm{~s}} 32.3 \mathrm{ft}}{0.80}=3779 \frac{\mathrm{ft}-\mathrm{lbf}}{\mathrm{~s}} \\
& =3779 \frac{f t-l b f}{s} \frac{1 \mathrm{HP}}{550 \frac{f t-l b f}{s}}=6.48 \mathrm{HP}
\end{aligned}
$$

Energy Conservation + Momentum

- Ventilation air at 530R and 14.7 psia uses a $3 / 4 \mathrm{hp}$ fan to produce steady air velocity of $40 \mathrm{ft} / \mathrm{s}$ in a $24^{\prime \prime}$ duct, find maximum fan efficiency and thrust of air on supporting infrastructure.

Fluid Type-IDEAL GAS AIR

Mass: NO
 Manometer: NO
 Energy: YES
 Momentum: YES

$$
\frac{P_{1}}{\gamma}+\frac{V_{1}^{2}}{2 g}+\not f_{1}+h_{p_{\text {DEELL }}}=h_{\text {DEELI }}+\frac{P_{2}}{\gamma}+\frac{V_{2}^{2}}{2 g}+\not f_{2}+h_{l}
$$

Maximum Fan Efficiency; $h_{l}=0$

$$
\begin{aligned}
& P_{1} \approx P_{2}, V_{1} \approx 0 \\
& h_{p_{\text {DEELL }}}=\frac{V_{2}^{2}}{2 g} \rightarrow \text { Fan work is converted to air kinetic energy } \\
& =24.8 \mathrm{ft} \\
& \dot{W}_{\text {Ideal }}=\gamma Q h_{p_{\text {DEEAL }}} ; \eta_{\text {fan }}=\frac{\dot{W}_{\text {ideal }}}{\dot{W}_{\text {actual }}} \\
& \gamma=\rho g=\frac{P_{\text {abs }}}{R_{\text {air }} T_{a b s}} g=\frac{14.7 p \operatorname{sia} \bullet 144 \frac{\mathrm{in}^{2}}{f t^{2}}}{1716.49 \frac{\mathrm{ft}-\mathrm{lbf}}{\text { slug }-R} \bullet 530 R} 32.2 \mathrm{ft} / \mathrm{s}^{2}=0.075 \frac{\mathrm{lbf}}{\mathrm{ft}}{ }^{3} \\
& Q=A V=126 \frac{f t^{3}}{s}, A=\frac{\pi D^{2}}{4} \\
& \dot{W}_{\text {Ideal }}=\gamma Q h_{p_{\text {IDEAL }}} \frac{h p}{550 \frac{f t-l b f}{s}}=0.426 h p ; \eta_{\text {fan }}=\frac{\dot{W}_{\text {Ideal }}}{\dot{W}_{\text {actual }}} \\
& \eta_{\text {fan }}=\frac{\dot{W}_{\text {ideal }}}{\dot{W}_{\text {actual }}}=\frac{0.426}{0.75}=0.56 \rightarrow 56 \% \\
& \text { MOMENTUM } \\
& \rightarrow+\sum_{x} F_{x}=V_{2} \dot{m}=V_{2} \rho Q
\end{aligned}
$$

GENERAL ENERGY EQUATION--MULTIPLE I/O STREAMS

$\dot{Q}_{\text {cs }}-\dot{W}_{s_{\text {DLEL }}}+\sum_{\text {in }}\left(\dot{m} g\left(\frac{p_{1}}{\gamma}+\frac{u_{1}}{g}+\frac{V_{1}^{2}}{2 g}+z_{1}\right)\right)=\sum_{\text {out }}\left(\dot{m} g\left(\frac{p_{2}}{\gamma}+\frac{u_{2}}{g}+\frac{V_{2}^{2}}{2 g}+z_{2}\right)\right)+\sum_{L} h_{L}[m] \dot{m}_{\text {out }} ; W$ or $f t-l b f / s ;$
LET \rightarrow
UNITS: WATTS or FT-LBF/s

$H_{L}[$ Watts $]=\dot{m}_{B}(\mathrm{~kg} / \mathrm{s})(g) h_{L_{A-B}}(\mathrm{~m})=\dot{m}_{B} g\left(h_{q}+h_{\text {minior }}+h_{\text {major }}\right) \rightarrow$ Total SYSTEM Losses; \rightarrow OR
$H_{L_{A-B}}[f t-l b f / \mathrm{sec}]=\dot{m}_{B}(s l u g s / s) g h_{A-B}(f t)$
(one INLET/one EXIT) \rightarrow
Energy Equation \rightarrow "m;ft" $\rightarrow(\div \dot{m} g)$
$\frac{\dot{Q}_{c s}}{\dot{m} g}+\frac{\dot{W}_{\text {Pump }_{\text {DEEAL }}}}{\dot{m} g}+\frac{p_{1}}{\gamma}+\frac{u_{1}}{g}+\frac{V_{1}^{2}}{2 g}+z_{1}=\frac{\dot{W}_{\text {Turbine }_{\text {DEALL }}}}{\dot{m} g}+\frac{p_{2}}{\gamma}+\frac{u_{2}}{g}+\frac{V_{2}^{2}}{2 g}+z_{2}+h_{q}(m) ;$ units $=m$, or, ft
$\mathrm{h}_{p}+h_{1}=h_{T}+h_{2}+h_{q}$
$h_{\text {minor }}(m)=\sum_{i} K_{i} \frac{V_{i}^{2}}{2 g} ; \rightarrow$ Component Losses
$h_{\text {major }}(m)=\sum_{i} f_{i} \frac{L_{i}}{D_{i}} \frac{V_{i}^{2}}{2 g} ; \rightarrow$ Straight Pipe Section Losses
$h_{q}(m)=\frac{u_{2}}{g}-\frac{u_{1}}{g}-\frac{\dot{Q}_{c s}}{\dot{m} g}+h_{L_{A-B}} ; \rightarrow$ Thermal Losses

Where are we in the term?

Fluid Properties \& Basic Characteristics

Completed

