Conservation of Mass

The Continuity Equation

MECH-322 FLUID MECHANICS

Heat Transfer Students, SPRING 2021

> I would tell them to review the lectures on your own time, and only use those to study. The only work that will be correct in his classes are ones that follow his paths, not ones you might learn from online supplemental lectures or lectures from other schools.

Find your own explanation of the path if the one provided does not work.

> A thermodynamic system is defined as a quantity of matter or a region in space that is of interest. The mass or region outside the system is called the surroundings, and the surface that separates the system and the surroundings is called the boundary.

Thermodynamic

 System
Control mass system

Control volume system

Closed system
Isolated system

Open system

REYNOLDS TRANSPORT THEOREM

$$
\frac{D B}{D t}_{\text {SYSTEM }} \equiv \frac{\partial}{\partial t}\left[\int_{C V}\left(\rho\left[\frac{k g}{v o l}\right] b\left[\frac{p r o p}{k g}\right]\right) d \forall\right]+\int_{C S} \rho b(\vec{V} \bullet \hat{n}) d A
$$

$$
\begin{aligned}
\frac{D B}{D t} & \equiv \text { SYSTSTEM Time rate of change of extensive parameter (e.g. B) } \\
\frac{\partial}{\partial t}\left[\int_{C V}\left(\rho\left[\frac{k g}{v o l}\right] b\left[\frac{p r o p}{k g}\right]\right) d \forall\right] & \equiv \text { Rate of storage of B within CONTROL VOLUME } \\
\int_{C S} \rho b(\vec{V} \bullet \hat{n}) d A & \equiv \text { NET TRANSPORT of B accross the entire control surface }
\end{aligned}
$$

CONTINUITY

- Mass Conservation: "TIME RATE OF CHANGE OF SYSTEM MASS = 0"

$\frac{D M}{D t}$	$=0 ;$
SSTTEM	
M	$=$ system MASS $=\operatorname{DENSITY}(\mathrm{kg} / \mathrm{m} 3) \times \operatorname{VOLUME}(\mathrm{m} 3)$
$M_{\text {sys }}$	$=\int_{\text {sys }} \rho d \forall$

- REYNOLDS TRANSPORT THM.

$$
\frac{D M}{D t}_{\text {SYSTEM }} \equiv 0=\frac{\partial}{\partial t}\left[\int_{C V}\left(\rho\left[\frac{k g}{v o l}\right]\right) d \forall\right]+\int_{C S} \rho(\vec{V} \bullet \hat{n}) d A
$$

- Constant Properties \& Flow
$\dot{m}=\rho A V_{n}=\rho Q:$ MASS FLOW RATE (mass/time)
$V_{n}=$ NORMAL VELOCITY @ SURFACE

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{o u t}-\sum \dot{m}_{i n}
$$

Example

- Find mass flow rate of fuel into engine- Steady Flow.

SOLUTION

Intake Velocity, W1 \equiv relative to moving control volume Exhaust Vedlocity, W2 \equiv relative to moving control volume

$$
\frac{D}{D t} \int_{s y s} \rho d \forall=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{\text {out }}-\sum \dot{m}_{\text {in }}=0
$$

$$
\frac{\partial}{\partial t} \int_{c v} \rho d \forall=0 \rightarrow S T E A D Y
$$

$$
\begin{aligned}
(\rho A W)_{2}-(\rho A W)_{1} & =0 \\
\rho_{2} A_{2} W_{2}-\rho_{1} A_{1} W_{1}-\dot{m}_{\text {fuel }} & =0 \\
\dot{m}_{\text {fuel }} & =(0.515 \mathrm{~kg} / \mathrm{m} 3)(0.558 \mathrm{~m} 2)(2021 \mathrm{~km} / \mathrm{hr})(1000 \mathrm{~m} / \mathrm{km}) \\
& -(0.736 \mathrm{~kg} / \mathrm{m} 3)(0.80 \mathrm{~m} 2)(971 \mathrm{~km} / \mathrm{hr})(1000 \mathrm{~m} / \mathrm{km}) \\
& =(580,800-517,700) \mathrm{kg} / \mathrm{hr} \\
& =9100 \mathrm{~kg} / \mathrm{hr}
\end{aligned}
$$

Example

- Circular Pool with two hoses with fill rates of $2 \mathrm{~m} / \mathrm{s} \& 1.5 \mathrm{~m} / \mathrm{s}$.
- Find time required to fill pool to a depth of 2 m .
- Solution: Note mass of control volume is changing with time.

SOLUTION

$$
\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{\text {out }}-\sum \dot{m}_{i n}=0
$$

$$
m(z(t))=\text { mass }=\rho(\mathrm{kg} / \mathrm{m} 3) \forall(m 3)=
$$

$$
=1000 \mathrm{~kg} / m^{3}\left(\frac{\pi D^{2}}{4} m^{2}\right) \bullet z(t) m
$$

$m(z(t))=19,600 \bullet z(t) k g$, constant density

2/16/2023
$\frac{\partial}{\partial t} \int_{c v} \rho d \forall=\frac{d}{d t}(\rho V)=\frac{d}{d t}(19,600 z)=19,600 \frac{d z}{d t}$
$\sum \dot{m}_{\text {out }}=0$
$\sum \dot{m}_{i n}(t)=\dot{m}_{1}(t)+\dot{m}_{2}(t)=\rho\left(A_{1} V_{1}(t)+A_{2} V_{2}(t)\right)$ First Order O.D.E.
$19,600 \frac{d z}{d t}=\sum \dot{m}_{i n}(t)$
Separate Variables and Integrate

$$
\mathrm{a} \frac{d y}{d t}=b(t)
$$

$19,600 \int_{0}^{z^{*}} \mathrm{dz}=\int_{0}^{t^{*}}\left(\sum \dot{m}_{i n}\right) d t=\int_{0}^{t^{*}} \rho\left(A_{1} V_{1}(t)+A_{2} V_{2}(t)\right) d t$
$19,600\left(z^{*}\right)=\rho\left(A_{1} V_{1}+A_{2} V_{2}\right) t^{*}$
so for a known " z ", we can find the time as:
$\mathrm{t}^{*}=\frac{19,600\left(z^{*}\right)}{\rho\left(A_{1} V_{1}+A_{2} V_{2}\right)}, z^{*}=2 m$
SOLVE
$t^{*}=49,300 s$

NOTE: Velocity may be a function of time.
i.e. $\mathrm{V}(\mathrm{t})=\mathrm{a}_{0} e^{-\alpha t}$
i.e. $\mathrm{V}(\mathrm{t})=\mathrm{c}_{0} \sin (\omega t)$

If so, would need to integrate velocity function
over time interval

Examples of Time Varying Velocity Fields

$$
\begin{aligned}
& \text { i.e. } \mathrm{V}(\mathrm{t})=\mathrm{a}_{0} e^{-\alpha t} \\
& \int_{t_{1}}^{t_{2}} \mathrm{a}_{0} e^{-\alpha t} d t=\frac{\mathrm{a}_{0}}{-\alpha}\left[e^{-\alpha t}\right]_{t_{1} \rightarrow t_{2}}=\frac{\mathrm{a}_{0}}{-\alpha}\left[e^{-\alpha t_{2}}-e^{-\alpha t_{1}}\right] \\
& \text { i.e. } \mathrm{V}(\mathrm{t})=\mathrm{c}_{0} \sin (\omega t) \\
& \int_{t_{1}}^{t_{2}} \mathrm{c}_{0} \sin (\omega t) d t=-\frac{\mathrm{c}_{0}}{\omega}[\cos (\omega t)]_{t_{1} \rightarrow t_{2}}=-\frac{\mathrm{c}_{0}}{\omega}\left[\cos \left(\omega t_{2}\right)-\cos \left(\omega t_{1}\right)\right]
\end{aligned}
$$

Example

Oxygen is supplied via tanks 30 cm diameter and 1.3 m tall at $13,800 \mathrm{kPa}$. The exhaust valve is 12.5 mm in diameter and the exit velocity is $1.5 \mathrm{~m} / \mathrm{s}$ at a constant temperature of 25C. FIND TANK PRESSURE AFTER 60S.

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{c V} \rho d \forall+\sum \dot{m}_{o u t}-\sum \dot{m}_{i n}=0 \\
& \sum \dot{m}_{i n}=0
\end{aligned}
$$

$$
\begin{aligned}
& \text { IDEAL-GAS } \\
& \rho(t)=\frac{P(t)}{R T} \\
& m=\rho \bullet \forall \\
& \forall=\text { Area } x \text { Height } \\
& \frac{\partial}{\partial t} \int_{c v} \rho d \forall=\frac{D}{D t}(\text { mass }=\rho \forall)=\frac{\forall}{R T} \frac{D P}{D t} \\
& \frac{\forall}{R T} \frac{D P}{D t}=-\sum \dot{m}_{\text {out }}=-\rho A_{e} V_{e}=-A_{e} V_{e} \frac{P(t)}{R T}
\end{aligned}
$$

FINAL SOLUTION

$\frac{\forall}{R T} \frac{d P}{d t}=-\sum \dot{m}_{\text {out }}=-\rho A_{e} V_{e}=-A_{e} V_{e} \frac{P(t)}{R T}$
Cancel, Separate Variables, Integrate

$$
\int_{P_{i}}^{P^{*}(t)} \frac{d P}{P}=\frac{-A_{e} V_{e}}{\forall} \int_{0}^{t^{*}} d t
$$

$$
\begin{aligned}
& \ln \left(\frac{P^{*}(t)}{P_{i}}\right)=\frac{-A_{e} V_{e}}{\forall} t^{*} \\
& -\ln \left[\frac{P^{*}(t)}{P_{i}}\right] \frac{\forall}{A_{e} V_{e}}=t^{*}\left(P^{*}\right) ;(\text { Is time negative ?) }
\end{aligned}
$$

Air at STP enters the compressor as shown. Determine a: Rate (slugs/s) at which the mass of air in the tank is increasing/decreasing; b : Average time rate of change of air density within the tank.

Determine a: Rate (slugs/s) at which the mass of air in the tank is increasing/decreasing;

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{\text {out }}-\sum \dot{m}_{\text {in }} & =0 \\
\frac{D}{D t}(\rho \forall) & =\sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }} \\
\frac{D}{D t}(\text { mass }) & =\rho_{\text {in }} Q_{\text {in }}-\rho_{\text {out }} Q_{\text {out }} \\
& =0.00238 \frac{\operatorname{slugs}}{f t^{3}} 10 \frac{f t^{3}}{s}-0.0035 \frac{s l u g s}{f t^{3}}\left(V_{\text {out }} A_{\text {out }}\right) \\
& =0.00238 \frac{\operatorname{slugs}}{f t^{3}} 10 \frac{f t^{3}}{s}-0.0035 \frac{s l u g s}{f t^{3}}\left(700 \frac{f t}{s} \pi \frac{D_{o u t}^{2}}{4}\right) \\
& =0.00456 \frac{\operatorname{slugs}}{s} \uparrow(\text { increasing })
\end{aligned}
$$

b: Average time rate of change of air density within the tank

$$
\begin{aligned}
\frac{\partial}{\partial t} \int_{c v} \rho d \forall & =\sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }} \\
& \text { Water is Incompressible } \\
\frac{D}{D t}\left(\rho V_{s y s}\right)= & \sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }} \\
V_{\text {sys }} \frac{D}{D t}(\rho)= & \sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }} \\
\frac{D}{D t}(\rho)= & \frac{\sum \dot{m}_{\text {in }}-\sum \dot{m}_{\text {out }}}{V_{\text {sys }}} \\
= & \frac{0.00456 \frac{\text { slugs }}{s}}{20 f t^{3}} \\
& =2.28 \times 10^{-4} \frac{\text { slugs } / f t^{3}}{s}
\end{aligned}
$$

Water enters a rigid, sealed, cylindrical tank at steady rate of 100 liters/hr and forces gasoline ($\mathrm{SG}=0.68$) out. What is the time rate of change of mass of gas in the tank?

Gas, which floats on the water without mixing is forced out and both are incompressible.

HOMEWORK

4.2,3,23,25,26,29,34

