BERNOULLI \& UNITS STUDY AID

1. Pressurized water flows steadily from a large, closed tank. Follow the path ${ }^{1}$ and determine:
a. Pressure difference (lbf/ft2)
b. Volume Flow Rate ($\mathrm{ft} 3 / \mathrm{s}$)
c. Pressure in the space above the surface of the water in the tank (lbf/ft2)
d. Pressure at the inlet of the $1^{\prime \prime}$ ft Diameter section (lbf/ft2)

FIRST STEP: LABEL ALL IMPORTANT POINTS

- Static Pressure Taps
- Stagnation Pressure Taps

$$
S g_{H G}=13.55
$$

- Free Surfaces
- Inlet/Outlets/Free Jets
- Change in Diameters
- Manometer Fluid Interfaces
- Unknown Dimensions

Next Step: Apply Manometry "IF" Defined
NEED PRESSURE DIFFERENCE
BERRY POINT-to-POINT
Use DUCT Points Aligned With Static/Stagnation TAPS
$\mathrm{P}_{2}+\Delta P_{2-4}=P_{4}$
$P_{2}+\gamma_{H 20} S+\gamma_{H g}\left(\frac{1}{12}\right)-\gamma_{H 20}\left(\frac{1}{12}+\not S^{\prime}\right)=P_{4}$
$P_{2}-P_{4}=\frac{1}{12}\left(\gamma_{H 20}-\gamma_{H g}\right)$
$\frac{P_{2}-P_{4}}{\gamma_{H 20}}=\frac{1}{12}\left(1-S g_{H g}\right)=-1.0458 \mathrm{ft}$
NO OTHER APPROACH IS ACCEPTABLE

[^0]
NEXT STEP:

APPLY BERNOULLI: SAME POINTS
$\dot{m}_{2}\left(\frac{P_{2}}{\gamma_{H 20}}+\stackrel{\substack{z_{2}=z_{4} \\ z_{2}}}{z_{2}}+\frac{V_{2}^{2}}{2 g}\right)=\dot{m}_{4}(\frac{P_{4}}{\gamma_{H 20}}+\stackrel{\substack{z_{2}=z_{4} \\ z_{4}}}{=0 \cdot \overbrace{\frac{V_{4}^{2}}{2 g}}^{=0 \text { Stagnation }}) .{ }_{2}})$
One Inlet/One Exit
$\dot{m}_{2}=\dot{m}_{4}$
$\frac{P_{2}-P_{4}}{\gamma_{H 20}}=-\frac{V_{2}^{2}}{2 g}$

COMBINE WITH MANOMETRY

$\frac{P_{2}-P_{4}}{\gamma_{H 20}}=\frac{1}{12}\left(1-S g_{H g}\right)=-1.0458 f t$
$\frac{P_{2}-P_{4}}{\gamma_{H 20}}=-\frac{V_{2}^{2}}{2 g}=-1.0458 f t$
SOLVE
$\mathrm{V}_{2}=\sqrt{(1.0458 \mathrm{ft}) 2 \cdot 32.2 \mathrm{ft} / \mathrm{s}^{2}}=8.21 \mathrm{ft} / \mathrm{s}$
$Q=V_{2} A_{2}$
$Q=8.21 \mathrm{ft} / \mathrm{s} \bullet \pi \frac{D_{2}^{2}\left[f t^{2}\right]}{4}=6.45 \frac{\mathrm{ft}^{3}}{\mathrm{~s}}$

PRESSURE ABOVE WATER

Apply Bernoulli 0-3

$$
\begin{aligned}
& \frac{P_{0}}{\gamma_{H 20}}+\overbrace{z_{0}}^{=8 f t}+\frac{\overbrace{\frac{V_{0}^{2}}{2 g}}^{\approx 0}=\overbrace{P_{3}}^{=0 \text { psig:ffree jet }}+\overbrace{z_{3}}^{\gamma_{H 20}}+\frac{V_{3}^{2}}{2 g}}{P_{0}=(\frac{V_{3}^{2}\left[\frac{f t^{2}}{s^{2}}\right]}{2 g\left[\frac{f t}{s^{2}}\right]}-8 f t \overbrace{\gamma_{H 20}}^{2_{2} .4}\left[\frac{l b f}{f t^{3}}\right]=} \\
& P_{0}=16230.12 \frac{l b f}{f t^{2}}\left[\frac{1 f t^{2}}{144 i n^{2}}\right]=112.7 \mathrm{psig} \\
& V_{3}=\frac{Q}{A_{3}}=\frac{6.45 \frac{f t^{3}}{s}}{0.04909 t^{2}}=131.4 \mathrm{ft} / \mathrm{s}
\end{aligned}
$$

PRESSURE AT INLET

Apply Bernoulli 0-1

$$
\begin{aligned}
& \overbrace{P_{0}}^{\gamma_{H 20}}+\overbrace{z_{0}}^{=8, f t}+\frac{\overbrace{V_{0}^{2}}^{0}}{2 g}=\frac{\overbrace{P_{1}}^{\text {unknown }}}{\gamma_{H 20}}+\overbrace{z_{1}}^{=0 f t}+\frac{V_{1}^{2}}{2 g} \\
& \frac{P_{1}}{\gamma_{H 20}}=\frac{P_{0}}{\gamma_{H 20}}+z_{0}-\frac{V_{1}^{2}}{2 g} \\
& P_{1}\left[\frac{l b f}{f t^{2}}\right]=\left[\frac{P_{0}}{\gamma_{H 20}}[f t]+z_{0}[f t]-\frac{V_{1}^{2}}{2 g}[f t]\right] \gamma_{H 20}\left[\frac{l b f}{f t^{3}}\right]
\end{aligned}
$$

2. The temperature distribution in a fluid is given below along with its velocity vector field:

$$
\begin{aligned}
T[C](x, y, t) & =\left(10[] x^{\frac{1}{3}}+5[] t y^{\frac{-2}{7}}+24[] e^{-\alpha[t t}\right)[C] \\
& " 10 " \\
{[C] } & =[] m^{\frac{1}{3}} \rightarrow[]=\left[\frac{C}{m^{\frac{1}{3}}}\right] \\
& " 5 " \\
{[C] } & =[][s][m]^{-2 / 7} \rightarrow[]=\frac{C}{s-m^{-2 / 7}}=\left[\frac{C m^{2 / 7}}{s}\right] \\
& " 24 " \\
{[C] } & =[][1] \rightarrow[]=C \\
" & \alpha " \\
{[1] } & =[] s \rightarrow[]=\frac{1}{s} \\
\vec{V}\left[\frac{m}{s}\right](x, y, t) & =u \hat{i}+v \hat{j} \\
& =\left(\left(20[] x t^{\frac{-3}{14}}+45[] y^{2}\right) \hat{i}-\left(23[] x^{2}+50[] x^{\frac{6}{7}} y t\right) \hat{j}\right)\left[\frac{m}{s}\right]
\end{aligned}
$$

χ Through this experience,I began to understand the fundamental concepts of the course, thanks to your focus upon the units of each problem. It sounds like a little thing, but is one that is a very important detail to double check the math through each problem. At times I was frustrated and felt as though I could not understand the material, but with persistence and trying to understand the big picture, I began to make much progress. I will remember this class for how it showed me I can learn a great deal in a short amount of time. I appreciate you providing the external pressure to unlock the better engineer in all of us students. ψ

Former Student, Spring 2022

$$
\begin{aligned}
& \vec{V}\left[\frac{m}{s}\right](x, y, t)=u \hat{i}+v \hat{j} \\
&=\left(\left(20[] x t^{\frac{-3}{14}}+45[] y^{2}\right) \hat{i}-\left(23[] x^{2}+50[] x^{\frac{6}{7}} y t\right) \hat{j}\right)\left[\frac{m}{s}\right] \\
& " 20 " \\
& \frac{m}{s}=[] m s^{\frac{-3}{14}} \rightarrow[]=\frac{\frac{m}{s}}{m s^{\frac{-3}{14}}} \rightarrow s^{-1} s^{\frac{3}{14}} \rightarrow\left[s^{\frac{-11}{14}}\right] \\
& " 45^{\prime \prime} \\
& " 23^{\prime \prime} \\
& \frac{m}{s}=[] m^{2} \rightarrow[]=\frac{\frac{m}{m^{2}}}{s}=\left[\frac{1}{m-s}\right] \\
& " 50 " \\
& \frac{m}{s}=[] m^{\frac{6}{7}} m s \rightarrow[]=\frac{\frac{m}{s}}{m^{2}}=\left[\frac{1}{m-s}\right] \\
& \frac{m^{\frac{6}{7}}}{m s}=\frac{m}{m^{\frac{13}{7}} s^{2}}=\left[\frac{m^{\frac{6}{7}} s^{2}}{m}\right]
\end{aligned}
$$

where t is in seconds, x and y are in meters, and T is in degrees C. FOLLOW THE PATH AND:
a. Determine the correct units for the brackets []?
b. Using the definition of the TOTAL, or MATERIAL DERIVATIVE, determine the "parametric expression" for the time rate of change of temperature (i.e., $\left.\frac{D T}{D t}\left[\frac{C}{s}\right]\right)$ of a fluid traveling with velocity field above (i.e., $\left.\vec{V}\left[\frac{m}{s}\right](x, y, t)\right)$, AND, verify units:
c. Determine the spatial derivatives AND verify units: $\frac{\partial T}{\partial y}\left[\frac{C}{m}\right]$ and $\frac{\partial u}{\partial x}\left[\frac{m / s}{m}\right]$.

$$
\begin{aligned}
& T[C](x, y, t)=\left(10[] x^{\frac{1}{3}}+5[] t y^{\frac{-2}{7}}+24[] e^{-\alpha[t}\right)[C] \\
& \frac{D T}{D t} \frac{[C]}{[s]}=\frac{\partial T}{\partial t}+u \frac{\partial T}{\partial x}+v \frac{\partial T}{\partial y} \\
& =\overbrace{-\alpha\left[\frac{1}{s}\right] 24[C] e^{-\alpha[t} t}^{\frac{\partial T}{\partial t}}\left\{\frac{[C]}{[s]}\right\} \\
& +\{u\left[\frac{m}{s}\right] \overbrace{\left[1 0 \left[\frac{C}{\left.m^{\frac{1}{3}}\right]} \frac{1}{3} x^{-\frac{2}{3}}\left[m^{-\frac{2}{3}}\right]\right.\right.}^{\frac{\partial T}{\partial x}}\}\left\{\left\{\frac{[C]}{[s]}\right\}\right. \\
& +\{v\left[\frac{m}{s}\right] 5 \overbrace{\left[\frac{C-m^{2 / 7}}{\beta}\right](-2 / 7) t[\delta] y^{-\frac{9}{7}}\left[m^{-\frac{9}{7}}\right]}^{\frac{\partial T}{\partial v}}\}\left\{\left[\frac{[C]}{[s]}\right\}\right.
\end{aligned}
$$

$$
\begin{aligned}
& \frac{\partial T}{\partial x}\left[\frac{C}{m}\right], \frac{\partial T}{\partial y}\left[\frac{C}{m}\right], \text { and } \frac{\partial u}{\partial x}\left[\frac{m / s}{m}\right] \\
& T[C](x, y, t)=\left(10[] x^{\frac{1}{3}}+5[] t y^{\frac{-2}{7}}+24[] e^{-\alpha[t t}\right)[C] \\
& \frac{\partial T}{\partial x}\left[\frac{C}{m}\right]=10\left[\frac{C}{m^{\frac{1}{3}}}\right] \frac{1}{3} x^{-\frac{2}{3}}\left[m^{-\frac{2}{3}}\right] \rightarrow[C]\left[m^{\frac{-\frac{2}{3}-\frac{1}{3}-\frac{1}{3}}{3}}\right] \rightarrow \frac{[C]}{[m]} \\
& \frac{\partial T}{\partial y}\left[\frac{C}{m}\right]=-\frac{10}{7}\left[\frac{C m^{2 / 7}}{f}\right] t[f] y^{\frac{-9}{7}\left[m^{\frac{-9}{7}}\right] \rightarrow[C]\left[m^{\frac{2-9}{7}}\right] \rightarrow \frac{[C]}{[m]}}
\end{aligned}
$$

[^0]: ${ }^{1}$ NO NEED TO MOVE FORWARD IF PATH IS NOT FOLLOWED

