MECH-420 SPECIAL TOPICS HW \#1

TYPED INDIVIDUAL WORK
SUBMIT TO BLACKBOARD W/
SOLUTION AND SPREADSHEET/MATHLAB

A spherical shell of inner radius " r " and outer radius " r_{2} " serves as radiation containment vessel is exposed to a convective fluid, $\mathrm{T}_{\infty}\left(r_{2}\right)=300 \mathrm{~K}$, and convective heat transfer coeff. " $\mathrm{h}=25 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K} "$. The internal material has a volumetric heat generation rate defined as:
$\dot{\mathrm{q}}(\mathrm{r})=\dot{\mathrm{S}}_{g e n}(r)\left[\frac{W}{m^{3}}\right]=S_{0}\left[\frac{W}{m^{3}}\right]\left(2.0+\frac{r^{4}}{r_{1}^{4}}\right) ; 0 \leq r \leq r_{1}, r_{1}=2.5 m, r_{2}=5 m, S_{0}=20 \mathrm{~kW} / \mathrm{m}^{3}$.
If $\mathrm{V}_{\text {sphere }}=\frac{4}{3} \pi r^{3}$, find:
a) Total heat generated [W],
b) steady state surface temperature $\mathrm{T}_{s}\left(\mathrm{r}_{1}\right)$
c) Plot $T_{s}\left(\mathrm{r}_{1}\right)$ vs r_{1} as $0 \leq \mathrm{r}_{1} \leq 4.5 \mathrm{~m}$ (submit typed PDF solution and spreadsheet/MATLAB)

TOTAL ENERGY GENERATED

$$
\dot{\mathrm{q}}(\mathrm{r})=\dot{\mathrm{S}}_{g e n}(r)\left[\frac{W}{m^{3}}\right]=S_{0}\left[\frac{W}{m^{3}}\right]\left(2.0+\frac{r^{4}}{r_{1}^{4}}\right) ; 0 \leq r \leq r_{1}
$$

$$
\dot{E}_{\text {gen }}=\int_{V} \dot{\mathrm{~S}}_{\text {gen }}(r)\left[\frac{W}{m^{3}}\right] d V, V_{\text {sphere }}=\frac{4}{3} \pi r^{3}, \frac{d V}{d r}=4 \pi r^{2}, d V=4 \pi r^{2} d r
$$

$$
\dot{E}_{g e n}=\int_{0}^{r_{1}}\left(2.0+\frac{r^{4}}{r_{1}^{4}}\right) 4 \pi r^{2} d r
$$

$$
=4 \pi S_{0}\left[\frac{W}{m^{3}}\right]_{0}^{r_{1}}\left(2.0+\frac{r^{4}}{r_{1}^{4}}\right) r^{2} d r=4 \pi S_{0}\left[\frac{W}{m^{3}}\right] \int_{0}^{r_{i}}\left(2.0 r^{2}+\frac{r^{6}}{r_{1}^{4}}\right) d r
$$

$$
=4 \pi S_{0}\left[\frac{W}{m^{3}}\right]\left[\frac{2 r^{3}}{3}+\frac{r^{7}}{7 r_{1}^{4}}\right]_{0-r_{1}}=4 \pi S_{0}\left[\frac{W}{m^{3}}\right]\left[\frac{2 r_{1}^{3}}{3}+\frac{r_{1}^{7}}{7 r_{1}^{4}}\right]
$$

$$
=4 \pi S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}\left[\frac{2}{3}+\frac{1}{7}\right]=4 \pi S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}\left[\frac{14}{21}+\frac{3}{21}\right]
$$

$$
=4 \pi S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3} \frac{17}{21}
$$

$$
\dot{E}_{g e n}=\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3} \equiv W
$$

Surface Temperature, Ts(r1) @ r2
 Parametric Road Map

$\dot{E}_{g e n}=\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3} \equiv W$
$\dot{+}_{\text {in }}-\stackrel{+}{\dot{E}}_{\text {out }}+\stackrel{ \pm}{E}_{g}=\frac{d E_{\text {St }}}{d t} \equiv \rho \forall \rho_{p} \frac{d T}{d t}$

$$
T_{s_{r=2}}\left(r_{1}\right)=T_{\infty}[C]+\frac{\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}}{\bar{h} \frac{W}{m^{2}-K}\left(4 \pi r_{2}^{2}\right)}=[C]
$$

$\dot{\dot{E}}_{\text {out }}=\stackrel{ \pm}{\dot{E}}_{g}$
$\bar{h} A_{0}\left(T_{s}-T_{\infty}\right)=\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}$
$T_{s}\left(r_{1}^{3}\right)=T_{\infty}+\frac{\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}}{\bar{h} A_{0}}$
$T_{s_{r=1}}\left(r_{1}\right)=T_{\infty}[K]+\frac{\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}}{\bar{h} \frac{W}{m^{2}-K}\left(4 \pi r_{2}^{2}\right)}=[K]$

HW \#1 - Problem 2

FOLLOW THE PATH.

HW \#1-Problem 2 r1 vs Ts vs HT Coeff

$$
T_{s_{r=r_{2}}}\left(r_{1}\right)=T_{\infty}[C]+\frac{\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}}{\frac{W}{m^{2}-K}\left(4 \pi r_{2}^{2}\right)}=[C]
$$

CORE LEARNING OBJECTIVES

1. Internal heat generation rate $\dot{S}_{g e n}(r)$ for this problem is only within internal sphere: $0 \leq \mathrm{r} \leq \mathrm{r}_{1}$
i.e., $\dot{E}_{g e n}=\int_{0}^{r} \dot{S}_{\text {gen }}(r) d V=\int_{0}^{r} S_{0}\left[\frac{W}{m^{3}}\right]\left(2.0+\frac{r^{4}}{r_{1}^{4}}\right) d V=\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3} \equiv W$
2. The convective heat transfer coefficient is only applied at the OUTER boundary exposed to fluid.
i.e., $\mathrm{q}[\mathrm{W}]=\bar{h} A_{0}\left(T_{s}\left(r=r_{2}\right)-T_{\infty}\right), A_{0}=4 \pi r_{2}^{2}$
3. An over all energy balance for the entire canister yields for outer surface temperature:
$T_{S_{r=2}}\left(r_{1}\right)=T_{\infty}[K]+\frac{\frac{68 \pi}{21} S_{0}\left[\frac{W}{m^{3}}\right] r_{1}^{3}}{\bar{h} \frac{W}{m^{2}-K}\left(4 \pi r_{2}^{2}\right)}=[K] \sim r_{1}^{3}$
which is a function of inner sphere radius $\left(r_{1}\right)$ with internal heat generation rate.
As r_{1} increases, the more HEAT is generated, and the more heat must be transfeered to the
 outer suface to be carried away by the external convective fluid.
