

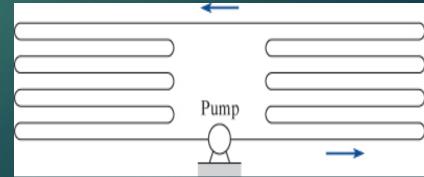
Energy & Work Conservation Study Aid DR. K. J. BERRY

The Future is Out There. Go FORTH.....

OBJECTIVE

- To show an ability to execute process for applying conservation of Energy/Work equation for viscous pipe and component flow.
- To show an ability to derive non-linear friction characteristic equation involving friction factor and volume flow rate, or diameter.
- To show an ability to solve non-linear friction characteristic equation through an iterative trial-n-error process via EXCEL or MATLAB.

On the human excursion to Mars, as thermal systems engineer for base camp Excalibur 1, you are required to determine both the OG1 Mineral Oil (<u>https://www.multitherm.com/pdf/OG 1.PDF</u>) heat exchanger tube diameter "D" (DRAWN TUBING) and volume flow rate (Q) below assuming a maximum pressure drop of 5 psig at 140C. The total tube length is "L=40m" with return flanged bends as shown.


The pump head is defined as $\dot{W}_{p_{actual}}[Watts] = 100 - 3500Q^2$, where Q is m^3 / sec.

Let D be 2cm, 4cm, and 10cm and for each diameter plot:

• X:AXIS: Pump Efficiency(70-90%), Left YAXIS: Volume Flow Rate, Right YAXIS: Pump Work

• Evaluate effect of temperature variation from 110C to 170C in steps of 5C due to variations in the solar dust storms;

Plot Pump Efficiency (X axis) vs mass flow rate (Y axis) Verify Units on friction characteristic parametric equation.

Convert Pump Power from WATTS to "head" in "m"

$$\dot{W}_{p_{actual}}[Watts] = 100 - 3500Q^2$$
, where Q is m^3 / sec
 $h_{pump_{IDEAL}}(Q,T,\eta_{pump}) = \frac{\dot{W}_{p_{actual}}}{\dot{m}g} \eta_{pump} = \frac{\dot{W}_{p_{actual}}}{\rho(T)Qg} \eta_{pump} = \frac{100 - 3500Q^2}{\rho(T)Qg} \eta_{pump}$
Major and Minor Losses
Constant Diameter Series Piping
 $h_L = \frac{fL}{D} \frac{V^2}{2g} + \sum_L K_L \frac{V_L^2}{2g}$
 $L = 40m$, $K_{bend} = 0.3$, 14 Bends
 $h_L = \frac{V^2}{2g} \left(\frac{fL}{D} + 14 \cdot 0.3\right)$
 $= \frac{Q^2}{2g} \left(\frac{fL}{D} + 14 \cdot 0.3\right)$

CONSERVATION ENERGY/WORK

 $\gamma = \rho(T) \bullet g$

$$\Delta P = P_2 - P_1 = 5 psig \bullet \frac{144 ft^2}{in^2} = 720 PSF = 3,435 PA$$

$$\frac{P_1}{\gamma} - \frac{P_2}{\gamma} + h_p = \frac{V_2^2}{2g} + \frac{V_1}{2g} + h_L$$

$$\frac{P_1}{\gamma} - \frac{P_2}{\gamma} + \frac{100 - 3500Q^2}{\rho(T)Qg} \eta_{pump} = \frac{\frac{Q^2}{A^2}}{2g} \left(\frac{fL}{D} + 14 \bullet 0.3\right)$$

$$Q^3 \left[\frac{1}{A^2 2g} \left(\frac{fL}{D} + 14 \bullet 0.3\right)\right] + Q^2 \left[\frac{3500}{\rho g} \eta_{pump}\right] - Q \left[\frac{P_1}{\gamma} - \frac{P_2}{\gamma}\right] - \frac{100}{\rho g} \eta_{pump} = 0$$

$$aQ^3 + bQ^2 + cQ = d$$

Friction Characteristic Equation

ITERATIVE SOLUTION

Must guess "f", solve for "Q": Assume Turbulent						f guess	VEL	Red	fhalland	Q
$Q^3 \left[\frac{1}{2} \left(\frac{f}{f} \right) \right]$	$\left[\frac{L}{-+14 \bullet 0.3}\right] + Q$	$p^2 \left[\frac{3500}{\eta_{\text{memory}}} \right]$	$-Q\left[\frac{P_1}{P_1}-\frac{P_2}{P_2}\right]-\frac{10}{2}$	$\frac{00}{2}\eta_{m} = 0$		0.03	26.73805	236,139	0.015579	0.00840
$Q^{3}\left[\frac{1}{A^{2}2g}\left(\frac{fL}{D}+14\bullet0.3\right)\right]+Q^{2}\left[\frac{3500}{\rho g}\eta_{pump}\right]-Q\left[\frac{P_{1}}{\gamma}-\frac{P_{2}}{\gamma}\right]-\frac{100}{\rho g}\eta_{pump}=0$ Check Validity of "f" with Halland Equation $\frac{1}{\sqrt{f}}=-1.8\log_{10}\left(\left(\frac{\varepsilon/D}{3.7}\right)^{1.11}+\frac{6.9}{\text{Re}}\right)$ Re-Guess and Repeat Until Convergence						0.015579	36.28736	320,475	0.01486	0.01140
						0.01486	39.47046	348,586	0.014678	0.01240
						f guess	VEL	Red	fhalland	Q
						0.01	44.56342	393,565	0.014428	0.01400
						0.014428	39.47046	348,586	0.014678	0.01240
						0.014678	39.47046	348,586	0.014678	0.01240
$\dot{W} = [Watts] - 100 - 35000^2$ where O is m^3 / sec						f guess	VEL	Red	fhalland	Q
$\dot{W}_{p_{actual}}[Watts] = 100 - 3500Q^2$, where Q is m^3 / sec						0.1	19.00948	167,884	0.016497	0.00597
						0.016497	38.10809	336,555	0.014753	0.01197
						0.014753	38.10809	336,555	0.014753	0.01197
						0.014753	39.8588	352,016	0.014657	0.01252
						0.014657	39.95429	352,859	0.014652	0.01255
m/s2	kg/m3	N/m3	PA	m	m2	m		Pa-s		
g	density	Gamma	P2-P1	DIA	AREA		EFF	VISC	е	e/d
9.81	839	8230.59	-34354	0.02	0.0003	14 40	0.8	1.90E-0	3 1.50E-06	7.50E-05