Chapter 2

Fluid Statics

FOLLOW THE PATH

As you work to "re-work" the problems from the notes and the homework you should always recall the following basic engineering solution pathways:

1. If you don't understand the definitions used within the problem statement, how can one possibly have any chance of obtaining a valid solution.
2. Never put any number on paper unless one also state the units. (unless it is for certain that is indeed has no units, and can be proven).
3. Always ask? What are the fluid fundamentals driving the solution path?
4. Always form solution is terms of problem "variables" with "units" expressed, and not with numbers.
5. Always check units of final solution to ensure "form" of result is correct with proper units as expected, BEFORE moving to final stage of just plugging a number into a calculator.

Class 03: Fluid Statics - Pressure

- Pressure $=$ force (normal to surface) per unit area

$$
P=\lim _{\delta A \rightarrow \delta A^{\prime}} \frac{\delta F}{\delta A} \text { (scalar) }
$$

- S. I. Units $=\mathrm{N} / \mathrm{m}^{2}=1 \mathrm{~Pa}$ (Pascal)
- British Gravitational Units $=1 b f / \mathrm{ft}^{2}$

$$
1 \frac{l b f}{i n^{2}}(P S I)=\frac{144 l b f}{f t^{2}}(P S F)
$$

- $1 \mathrm{bar}=10^{5} \mathrm{~Pa}=100 \mathrm{kPa}=0.1 \mathrm{MPa}$
- $1 \mathrm{~atm}=101.325 \mathrm{kPa}=14.696 \mathrm{psi}=2116.2 \mathrm{lbf} / \mathrm{ft} 2=29.9 \mathrm{in} \mathrm{Hg}$

Going from p to F --> force always acts normal to the surface

Class 03: Fluid Statics - Pressure

$$
\Delta H_{2} 0_{\text {FEET }}=\Delta H g_{\text {Mercury }} \bullet \frac{\gamma_{h g}}{\gamma_{H_{2} 0}}=H g_{\text {Mercury }} \bullet 13.55
$$

- Manometer (in $\mathrm{H}_{2} \mathrm{O}$)

Measuring Pressure

- Barometer (in Hg)

Used to Measure Pressure Difference

Pressure and Temperature vs. Altitude

Class 03: Absolute, Gage, Vacuum Pressure

In engineering, we measure pressure relative to the local atmospheric pressure, and it is called gage pressure. Sea-level atmospheric pressure is 14.7 psi (abs) or 101 kPa .

Gage pressure (psig), Absolute pressure (psia)

Absolute pressure $=$
Atmospheric pressure
+
gage pressure

Absolute zero reference
Vacuum Pressure
Total pressure $=(32+14.7)=46.7 \mathrm{psi}$

Ex: 32 psi car's tire pressure

Class 03: Pressure Measuring Devices

Commercial Product: Bourdon Pressure Gage

(a)

Liquid-filled Bourdon Pressure gages for various pressure ranges.

(b)

Internal elements of Bourdon Pressure Gages.

DIFFERENTIAL PRESSURE ELEMENT

Class 03: Fluid Statics

Question: How does the pressure in a fluid vary from point to point at same elevation, assuming there are no shearing stresses?

Case I: Pressure at a same elevation point

Newton's Second Law: F=ma
The equation of motion, $\mathrm{F}=\mathrm{ma}$, in the y -direction is

$$
\begin{equation*}
\sum F_{y}=p_{y} \delta_{x} \delta_{z}-p_{s} \delta_{x} \delta_{s} \sin \theta=m a_{y}=\rho \frac{\delta_{x} \delta_{y} \delta_{z}}{2} a_{y} \tag{1}
\end{equation*}
$$

The equation of motion, $\mathrm{F}=\mathrm{ma}$, in the z -direction

γ and ρ specific weight and density of the fluid is

$$
\begin{equation*}
\sum F_{z}=p_{z} \delta_{x} \delta_{y}-p_{s} \delta_{x} \delta_{s} \cos \theta-\gamma \frac{\delta_{x} \delta_{y} \delta_{z}}{2}=m a_{z}=\rho \frac{\delta_{x} \delta_{y} \delta_{z}}{2} a_{z} \tag{2}
\end{equation*}
$$

Pressure must be multiplied by an appropriate area to obtain the force generated by the pressure

$$
\begin{equation*}
\delta_{y}=\delta_{s} \cos \theta ; \quad \delta_{z}=\delta_{s} \sin \theta \tag{3}
\end{equation*}
$$

From Eq. (1) \& (3), we get

$$
\begin{aligned}
& p_{y} \delta_{x}\left(\delta_{s} \sin \theta\right)-p_{s} \delta_{x} \delta_{s} \sin \theta=m a_{y}=\rho \frac{\delta_{\delta} \delta_{y} \delta_{z}}{2} a_{y} \\
& \rho \frac{\delta_{y} \delta_{z}}{2} a_{y} \approx 0, \delta_{y} \delta_{z} \rightarrow \text { Higher Order Terms-Small } \\
& \Rightarrow p_{y}-p_{s}=\rho \frac{\delta_{y} \delta_{z}}{2} a_{y} \approx 0(4) ;
\end{aligned}
$$

From Eq. (2) \& (3), we get

$$
\begin{align*}
& p_{z} \delta_{x}\left(\delta_{s} \cos \theta\right)-p_{s} \delta_{x}\left(\delta_{s} \cos \theta\right)-\gamma \frac{\delta_{x} \delta_{y} \delta_{z}}{2}=m a_{z}=\rho \frac{\delta_{X} \delta_{y} \delta_{z}}{2} a_{z} \\
& \Rightarrow p_{z}-p_{s}=\left(\rho a_{z}+\gamma\right) \frac{\delta_{z} \delta_{y}}{2} \approx 0 \tag{5}
\end{align*}
$$

Class 03: Fluid Statics- Pressure at a Point

What is happening at a point, we take the limit as δ_{x}, δ_{y}, and δ_{z} approach zero (while maintaining the angle \varnothing

It follows that $p_{y}=p_{s} ; \quad p_{z}=p_{s}$

Similarly, for x-direction $\quad p_{x}=p_{s}$

$$
\Rightarrow p_{s}=p_{x}=p_{y}=p_{z}
$$

Observation: The pressure at a point in a fluid at rest or in motion, is independent of direction as long as there are no shearing stresses present.

PASCAL's LAW

Case III: Variation with Elevation - Incompressible fluids

Since, specific weight $\gamma=\rho g$; changes in γ are caused either by a change in ρ or g.
ρ constant, incompressible fluids.

$$
\begin{gathered}
\frac{\partial p}{\partial x}=0 ; \quad \frac{\partial p}{\partial y}=0 ; \quad \frac{\partial p}{\partial z}=-\gamma \\
\int_{p_{1}}^{p_{2}} d p=-\gamma \int_{z_{1}}^{z_{2}} d z \Rightarrow p_{2}-p_{1}=-\gamma\left(z_{2}-z_{1}\right)=-\gamma h
\end{gathered}
$$

$$
\Rightarrow p_{1}-p_{2}=\gamma\left(z_{2}-z_{1}\right) \Rightarrow p_{1}=p_{2}+\gamma\left(z_{2}-z_{1}\right)=p_{2}+\gamma h
$$

$$
\Rightarrow p_{1}=p_{2}+\gamma h \Rightarrow \text { Valid for same fluid only!! }
$$

$$
h=\underline{p_{1}-p_{2}}
$$

Observation: Fluid at rest, pressure will increase as we move downward and will decrease as we move upward.

Derivations: Variation with Elevation

Question:
Picture a tub of water the size of the ocean ...
No waves - no wind - calm, cool water
If you descend to the bottom of the tub, will the pressure stay the same? change? increase? decrease?
if you stay at the same depth and move from side to side, will the pressure stay the same? change? increase? decrease?

FLUID STATICS-LAW OF HYDROSTATICS

$$
\begin{array}{ll}
\frac{d P}{d z}=+\gamma & g \downarrow z \downarrow \\
\frac{d P}{d z}=-\gamma & g \downarrow z \uparrow
\end{array}
$$

Incompressible + No Shear Stress POINT-TO-POINT METHOD

$$
\mathrm{P}_{A}+\Delta P_{A-B}=P_{B}
$$

FOLLOW THE PATH

Measurement of pressure - Laboratory Experiment/Research

A standard technique measuring pressure involves the use of liquid columns in vertical or inclined tubes. This technique is called Manometry.

Measuring pressure intensity:

- Piezometers

Manometers are often used to measure the difference in pressure in two points

It's very simple \& easy !

PA=P1 (Pascal's Law)

Class 03: Differential Manometers

Measuring pressure intensity:

- Differential Manometers

Slightly more difficult !!
Thus $\quad p_{A}+\gamma_{1} h_{1}-\gamma_{2} h_{2}-\gamma_{3} h_{3}=p_{B}$

The difference in pressure between A and B can be found by starting one end of the system and working around to the other end.
Example: At \mathbf{A}, the pressure is \mathbf{p}_{A}, which is equal to p_{1}. As we move to pt 2 , the pressure increases by $\gamma_{1} h_{1}$. The pressure at $\mathbf{p} 2$ is equal to p 3 , and as we move upward to pt 4 , the pressure decreases by $\gamma_{2} h_{2}$. Similarly, continue to move upward from pt 4 to pt 5, the pressure decreases by $\gamma_{3} h_{3}$
Finally, $p_{5}=p_{B}$.
Use consistent system of units

GENERAL POINT-to-POINT ROAD MAP

Identify and label elevation levels associated with different fluids using Pascal's Law.

Identify START and END POINT.
IDENTIFY and MISSING dimensions from START to END with dummy variable.

Transverse fluid circuit from START POINT to END POINT and apply POINT-TO-POINT method for LAW OF HYDROSTATICS to solve for unknowns,

Pressure Variation with Elevation - Example

Problem:
Solution: @ point 1,
$\left\lvert\, \begin{array}{ll}\boldsymbol{\nabla} \quad \text { (}\end{array} \quad p_{1}=p_{\text {atm }}=0\right.$ gage $=14.696$ PSIA $=101,325 P A$

Find pressure@point (3).
Now work from pt 1 to pt 3:
$p_{1}+\gamma_{\text {oil }} 0.9 m+\gamma_{H 2 O} 2.1 m=p_{3}$
$0+7,060 \mathrm{~Pa}+9810 \mathrm{~N} / \mathrm{m}^{3} \times 2.10 \mathrm{~m}$ $27,700 \mathrm{~Pa}$ (gage) $=p_{3}$

$$
S_{\text {oil }}=\frac{\gamma_{\text {oil }}}{\gamma_{\text {water }}} \Rightarrow \gamma_{\text {oil }}=S_{\text {oil }} \times \gamma_{\text {water }}
$$

$$
\begin{aligned}
p_{1}+\gamma_{\text {oil }} h & =p_{2} \\
0+\left(S_{\text {oil }} \times \gamma_{\text {water }}\right) \times h & =p_{2}
\end{aligned}
$$

$$
0.80 \times 9810 \mathrm{~N} / \mathrm{m}^{3} \times 0.9 \mathrm{~m}=7,060 \mathrm{~Pa} \text { (gage) }
$$

$$
p_{2}>p_{1}
$$

Note: Does the answer make sense?

$$
p_{3}>p_{2}
$$

Inclined-Tube Manometer

To measure small pressure changes

One leg of the manometer is inclined at an angle θ, and the differential reading l_{2} is measured along the inclined tube.

The difference in pressure can be expressed as

$$
p_{A}+\gamma_{1} h_{1}-\gamma_{2} l_{2} \sin \theta-\gamma_{3} h_{3}=p_{B}
$$

$$
\Rightarrow p_{A}-p_{B}(\text { pressure difference })=\gamma_{2} l_{2} \sin \theta+\gamma_{3} h_{3}-\gamma_{1} h_{1}
$$

Often used to measure small changes in gas pressure, if pipes A and B contain a gas then

$$
p_{A}-p_{B}(\text { pressure difference })=\gamma_{2} l_{2} \sin \theta
$$

Gas column height h_{1} and h_{3} neglected

Pressure Measurement using Manometer

Problem: Find the pressure P_{A}.

$$
\begin{aligned}
\gamma_{\mathrm{Hg}} & =133 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3} \\
\gamma_{\mathrm{H}_{2} \mathrm{O}} & =9810 \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

$$
\begin{aligned}
& p_{A}+\Delta P_{A-1}=p_{1} \\
& p_{A}+\gamma_{H 20} \frac{10-2}{100} m-\gamma_{h g} \frac{5-2}{100} m=p_{1}=0 \\
& p_{A}=0+\gamma_{h g} \frac{5-2}{100} m-\gamma_{H 20} \frac{10-2}{100} m
\end{aligned}
$$

Solution: We know $p_{1}=p_{\text {atm }}=0$ gage

$$
\begin{aligned}
& p_{2}=p_{1}+\gamma_{H g} \times \Delta h=0+\left(133 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3}\right) \times(0.05 \mathrm{~m})=6650 \mathrm{~N} / \mathrm{m}^{2} \\
& p_{2}=p_{3}(\text { Pascal's Law })
\end{aligned}
$$

$$
p_{A}=p_{5}=3205 \mathrm{~N} / \mathrm{m}^{2}=3,205 \mathrm{~Pa} \text { (Pascal's Law) }
$$

Pressure Measurement using Manometer

Problem: Find the pressure $\mathrm{P}_{\mathrm{B}}-\mathrm{P}_{\mathrm{A}}$.

$$
\begin{gathered}
\gamma_{H g}=133 \times 10^{3} \mathrm{~N} / \mathrm{m}^{3} \\
\gamma_{H_{O} O}=9810 \mathrm{~N} / \mathrm{m}^{3}
\end{gathered}
$$

Solution: We will use POINT-TO-POINT method

$$
\begin{aligned}
& p_{A}+\gamma_{H_{2} \mathrm{O}}(0.10 m)-\gamma_{\mathrm{Hg}}(0.13 m)-\gamma(0.4 m)=p_{B} \\
& p_{B}-p_{A}=980 P a-17300 P a-340 P a=-16,600 P a \\
& \quad \gamma=S . G . \times \gamma_{H_{2} \mathrm{O}}=0.86 \times 9810 \mathrm{~N} / \mathrm{m}^{3}=8436.6 \mathrm{~N} / \mathrm{m}^{3}
\end{aligned}
$$

FIND " $\Delta \mathrm{h}$ ".
ROAD MAP
Identify and label various elevation levels associated with different fluids and understanding Pascal's Law. Identify Starting Point and Ending Point.
Identify any "MISSING" dimensions from Start Point to End Point, Δ S.
Transverse circuit from Start Point and Apply POINT-TO-POINT method for Law of Hydrostatics
Solve for unknown.

IDENTIFY LEVELS and ANY MISSING DINENSIONS

$\gamma_{\text {oil }}\left[\frac{l b f}{f t^{3}}\right]=54.0 \frac{l b f}{f t^{3}}$
$P_{A}\left[\frac{l b f}{f t^{2}}\right]=2.0 \frac{l b f}{i h^{2}} \bullet \frac{144 i h^{2}}{f t^{2}}$
$P_{A I R}\left[\frac{l b f}{f t^{2}}\right]=0.50 \frac{l b f}{i h^{2}} \bullet \frac{144 i h^{2}}{f t^{2}}$

Determine Height Z

Law of Hydrostatics Drives Fluid Principles
Start Point: O, End Point 1
$\mathrm{P}_{0}+\gamma_{o i l} z=P_{A}$
$z[f t]=\frac{\left(P_{A}-\mathrm{P}_{0}\right)\left[\frac{l b f}{f t^{2}}\right]}{\gamma_{o i l}\left[\frac{l b f}{f t^{3}}\right]}[f t]$
$z[f t]=\frac{(2.0-0.5) \frac{l b f}{i n^{2}} \cdot \frac{144 i n^{2}}{f t^{2}}}{54.0 \frac{l b f}{f t^{3}}}=4 f t$

Problem 2.42

$$
\begin{aligned}
& P_{0}+\gamma_{o i l}(z+2)-\gamma_{m} h=P_{3} \\
& h[f t]=\frac{\left(P_{0}-P_{3}\right)\left[\frac{l b f}{f t^{2}}\right]+\gamma_{o i l}\left[\frac{l b f}{f t^{3}}\right](z+2)[f t]}{\gamma_{m}\left[\frac{l b f}{f t^{3}}\right]}[f t]
\end{aligned}
$$

$$
h[f t]=\frac{\left(P_{0}+\gamma_{o i l} z-P_{3}\right)\left[\frac{l b f}{f t^{2}}\right]+2[f t] \gamma_{o i l}\left[\frac{l b f}{f t^{3}}\right]}{\gamma_{m}\left[\frac{l b f}{f t^{3}}\right]}
$$

$$
h[f t]=\frac{P_{A}-P_{3}+2[f t] \gamma_{o i l}\left[\frac{l b f}{f t^{3}}\right]}{\gamma_{m}\left[\frac{l b f}{f t^{3}}\right]}[f t]
$$

OR PICK OTHER POINTS
Start: A, End $3 \rightarrow$ Apply Hydrostatics $\mathrm{P}_{A}+2 \gamma_{\text {oil }}-\gamma_{m} h=P_{3}$

$$
h[f t]=\frac{\left(P_{A}-P_{3}\right)\left[\frac{l b f}{f t^{2}}\right]+2[f t] \gamma_{o i l}\left[\frac{l b f}{f t^{3}}\right]}{\gamma_{m}\left[\frac{l b f}{f t^{3}}\right]}[f t]
$$

IDENTIFY LEVELS and ANY MISSING DINENSIONS

A flowrate measurement device in installed in a horizontal pipe through which water is flowing. A U tube manometer is connected through pressure taps with specific weight of the manometer fluid as $112 \mathrm{lbf} / \mathrm{ft} 3$.

Determine the differential reading of the manometer corresponding to a pressure drop between the taps of $0.5 \mathrm{lbf} / \mathrm{in} 2$.

APPLY HYDROSTATICS

Start 1, End 2
$\mathrm{P}_{1}+\left(\not / h_{1}+h+D \nvdash\right) \gamma_{H_{2} \mathrm{O}}-(h) \gamma_{m}-\left(\underline{\left.h_{1}+D \nmid 2\right) \gamma_{H_{2} \mathrm{O}}}=P_{2}\right.$

$h[f t]=\frac{0.5 \frac{\mathrm{lbf}}{\mathrm{in}^{2}} \bullet \frac{144 i n^{2}}{f t^{2}}}{[112-62.4]\left[\frac{\mathrm{lbf}}{f t^{3}}\right]}=1.45 \mathrm{ft}$

Problem 2.44

- Manometry, Manometry, Manometry!!! Learn it at the beginning, because you will still be using it the exact same way all the way through the final. Geometry is irrelevant, if you know the process to solve the type of problem that is presented, and follow the path. If you don't know the definitions, it is improbable that you will be able to define the problem. Define the problem \mathcal{E} develop the path of attack, BEFORE you start randomly writing down equations.
- FLUIDS STUDENT FALL 2023

STAGNATION OR TOTAL PRESSURE

At STAGNATION POINT, STATIC PRESSURE and Pressure induced by Velocity (DYNAMIC PRESSURE) is converted to TOTAL or STAGNATION PRESSURE

