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Seek Wisdom Do 
You? Do, or do not, 
there is no try.

TRUST THE PATH



ENGINEERING
PRODUCT DEVELOPMENT

Developing engineering 
solutions to improve mankind 
using applied math for idea 
creation and analysis, product 
development, and realization.
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What suggestion would you provide to future students to enhance their understanding 
and performance within ME-322/420 Fluid Mechanics/Heat Transfer?

Follow that path. Every problem in this class has a similar thought process for
understanding what is happening. It is also very important to have a very strong
understanding of the basic aspects of the fluid dynamics, the first 3-5 weeks will teach you
the most important aspects that will be critical to solving problems for the rest of this class
and for problems in your future. You must understand the basics before you dive into the
deep end of the pool.

What advice would you provide to MECH-322/420 Fluid/Heat Transfer students in Dr.
Berry’s class to enhance their success and performance?

Make sure to complete the homework but find a way to make sure your answers are
correct, practice done incorrectly will instill bad habits when trying to solve problems. Find
a problem, make sure you can do it correctly, then make sure you can do it over and over
correctly each time. If you can understand the fundamentals, every other problem is the
same path you only start from a different location.
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NO SUCCESS 
WITHOUT PRACTICE 



Fourier’s Law

• A RATE EQUATION that allows determination of the conduction heat flux
from knowledge of the temperature distribution in a medium

Fourier’s Law

• Its most general (vector) form for multidimensional conduction is:

q k T
→
′′ = − ∇

Implications:
– Heat transfer is in the direction of decreasing temperature 

(basis for minus sign).

– Direction of heat transfer is perpendicular to lines of constant 
temperature (isotherms).

– Heat flux vector may be resolved into orthogonal components.

– Fourier’s Law serves to define the thermal conductivity of the
medium /k q T

→ 
′′≡ − ∇ 
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q k T= − ∇′′
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“When” is the CV 1st Law Needed
 To find SURFACE temperature only, Ts. (and heat 

flux is known at each surface)
 Apply 1st law to CV around entire object

 To find initial rate of change of temperature (dT/dt)
 When there is no spatial gradients of temperature  

“INSIDE” the body, i.e. a “thin walled tube”.
 Apply at “surface” to find energy balance at surface to 

determine boundary conditions.
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Apply 1st Law to SURFACE
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ONLY CONCERNED ABOUT 
SURFACE TEMPERATURE.

KNOW FLUX AT ALL BOUNDARIES

BUT!!!! HOW DO WE FIND TEMP 
INSIDE OF MEDIUM, I.E. T(X) = ?

HEAT DIFFUSION 
EQUATION
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Heat Diffusion Equation ??

 2nd Order  PDE used to find temperature “INSIDE” 
body everywhere. i.e T(x, y,z,time).
 Use Fourier’s Law to now find q(x,y,z,time).

 Solve PDE to find (T(x) inside, and even find surface 
temperature, Ts = T(x=L).

 Requires information at boundary to find arbitrary 
constants of integration. Need boundary conditions.
 Use 1st law applied to each “surface” to determine heat 

flux boundary conditions.
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Heat Equation

The Heat Equation
• A differential equation whose solution provides the temperature distribution in a

stationary medium.

• Based on applying conservation of energy to a differential control volume 
through which energy transfer is exclusively by conduction.

• Cartesian Coordinates:

Net transfer of thermal energy into the 
control volume (inflow-outflow)

( , , , )x y z gen p
T T T Tk k k S x y z t c

x x y y z z t
ρ

 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    


(2.19)

Thermal energy
generation

Change in thermal
energy storage

DERIVE  One-D and Two-D HDE

3D Heat Diffusion Equation
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CORE UNDERSTANDING

To find T(x,y,z,t) INSIDE medium, we MUST 
solve 2nd ORDER PDE with Boundary 
Conditions to obtain EXACT SOLUTIONS.

NO OPTIONS

NO EXCEPTIONS

NO EXCUSES



1D HDE Cartesian
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1D HDE CARTESIAN FINAL 
FORM
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MOST GENERAL SOLUTION
 Assume steady state 1D Heat Transfer in a plain wall of 

width L, height H and depth D. Determine the most 
“GENERAL SOLUTION “. Assume homogeneous
medium for temperature T(x) within medium.

 Start with general form of HDE:

 Integrate with respect to “x” to express in terms of 
arbitrary constants of integration.
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Most  until we specify:
1. BOUNDARY CONDITIONS
2. Form of internal heat generation

General

 rate, 

 Solution

S ( )gen x

4/11/2022 17



EXACT SOLUTION ROADMAP
 NEED BOUNDARY CONDITIONS (one 

condition at each boundary):
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Constant Surface Temperature:

Constant Heat Flux:
Applied Flux

Insulated Surface

Convection: ( )0 0x=
T-k | = h T -T ,t
x ∞

∂
  ∂

2nd Order in Space Requires Two (2) Boundary Conditions
1st Order in Time requires One (1) Initial Condition

*

Boundary Condition

0
x X

dT INSULATION
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( , CONST. TEMP.sT x X t T= = →



Find PARAMETRIC
ROAD MAP EXACT Solution
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FIND C1 and C2
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W/m3 m W/m-K W/m2-K K K/m K
S0 L Kx h Tf C1 C2

20000 10 2000 2000 500 -31.83102 881.9721861

X T(x) q(x) S(x)
0 881.9722 0 0

0.5 881.9068 783.7839 3128.687
1 881.4512 3115.836 6180.335

1.5 880.2246 6938.735 9079.803
2 877.8653 12158.35 11755.7

2.5 874.0396 18646.15 14142.13
3 868.4498 26242.39 16180.33

3.5 860.8416 34760.02 17820.12
4 851.0104 43989.32 19021.12

4.5 838.8065 53703.02 19753.76
5 824.1385 63661.95 20000

5.5 806.9755 73620.88 19753.77
6 787.3485 83334.58 19021.14

6.5 765.3487 92563.89 17820.15
7 741.1259 101081.5 16180.36

7.5 714.8847 108677.8 14142.16
8 686.8794 115165.6 11755.74

8.5 657.4077 120385.3 9079.85
9 626.8033 124208.2 6180.385

9.5 595.4279 126540.3 3128.739
10 563.6623 127324.1 0.053072
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1D HDE Solution
Wall Sinusoidal Heat Generation
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Find Surface Temperature
Two (2) Methods
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• One-Dimensional Conduction in a Planar Medium with Constant Properties 
and NO GENERATION

2
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tx α
∂ ∂

=
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p

k
c

α
ρ

 ≡ →  

x p
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x x t
ρ∂ ∂ ∂  = ∂ ∂ ∂ 

becomes

KNOW YOUR HEAT DIFFUSION EQUATION (HDE)
(SPECIAL CASE)



Boundary Conditions

Boundary and Initial Conditions
• For transient conduction, Heat Diffusion Equation (HDE) is first order in time, requiring 

specification of an initial temperature distribution: ( ) ( )0 0t=T x,t = T x,
• Since HEAT DIFFUSION EQUATION (HDE) is second order in space, two boundary         
conditions, must be specified.  Some common cases: 

Constant Surface Temperature: ( )0 sT ,t = T

Constant Heat Flux:
Applied Flux

Insulated Surface

0 0x=
T | =
x

∂
∂

Convection:

( )0 0x=
T-k | = h T -T ,t
x ∞

∂
  ∂

2nd Order in Space Requires Two (2) Boundary Conditions
1st Order in Time requires One (1) Initial Condition

*

Boundary Condition

0
x X
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HDE + BC Solutions--CYLINDRICAL
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1D Cylindrical HDE
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r rq A [ ]" " "
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CONTROL VOLUME

Radial Area Normal to Heat Transfer:2 rLrA π≡
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1D Cylindrical HDE
Apply 1st Law
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2 (normal to Heat Transfer)
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1D Cylindrical HDE
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1D Cylindrical HDE
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Heat Flux Components (cont.)
• In angular coordinates                    , the temperature gradient is still

based on temperature change over a length scale and hence has
units of °C/m and not °C/deg.

( ) or ,φ φ θ

• Heat rate for one-dimensional, radial conduction in a cylinder or sphere:

– Cylinder

( )2
22r r r r

Wq A q rL m q Watts
m

π   ′′ ′′= = →    
or,

( ) 22 [ ]r r r r
W Wattsq A q r m q

Lengthm
π  ′ ′ ′′ ′′= = →  

– Sphere

( )2 2
24r r r r

Wq A q r m q Watts
m

π   ′′ ′′= = →    

304/11/2022



HDE SUMMARY
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1  Cartesian

2  Cartesi n
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1  Cylindrical 

2  Cylindrical
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1D Exact Solutions w/BC’s (QUIZ)
 SOLVE

 Temp-Temp
 Temp-Insulation
 Temp-Convection
 Temp-Heat Flux

32

2nd Order in Space Requires Two (2) Boundary Conditions
1st Order in Time requires One (1) Initial Condition
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Learning Expectations
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1. Solve 1D HDE for Cartesian, 
Cylindrical and Spherical  to obtain 
EXACT solution for T(x), T(r); and 
variable Sgen(x), Sgen (r).

2. Be able to obtain solution  for any 
of the three specified cases for 
Boundary Conditions



Conduction Analysis

Typical Methodology of a Conduction Analysis

• Solve appropriate form of heat equation to obtain the temperature
distribution. 

• Knowing the temperature distribution, apply Fourier’s Law to obtain the
heat flux at any time, location and direction of interest.

• Applications:

Chapter 3: One-Dimensional, Steady-State Conduction
Chapter 4: Two-Dimensional, Steady-State Conduction
Chapter 5: Transient Conduction

• Consider possible microscale or nanoscale effects in problems  involving very
small physical dimensions or very rapid changes in heat or cooling rates.
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Heat Flux Components

(2.24)r z
T T Tq k i k j k k
r r zφ φ

→ → → →   ∂ ∂ ∂′′ = − − −   ∂ ∂ ∂   

rq′′ qφ′′ zq′′

• Cylindrical Coordinates: ( ), ,T r zφ

sinr
T T Tq k i k j k k
r r rθ φθ θ φ

→ → → →   ∂ ∂ ∂′′ = − − −   ∂ ∂ ∂   
(2.27)

rq′′ qθ′′ qφ′′

• Spherical Coordinates: ( ), ,T r φ θ

• Cartesian Coordinates: ( ), ,T x y z

x y z
T T Tq k i k j k k
x y z

→ → → →     ∂ ∂ ∂′′ = − − −     ∂ ∂ ∂     
xq′′ yq′′ zq′′

(2.3)
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Heat Equation (Radial Systems)

2
1 1 ( , , , )r z gen p

T T T Tk r k k S x y z t c
r r r z z tr φ ρ

φ φ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (2.26)

• Spherical Coordinates:

• Cylindrical Coordinates:

2
2 2 2 2

1 1 1 sin ( , , , )
sin sinr gen p

T T T Tk r k k S x y z t c
r r tr r rφ θ θ ρ

φ φ θ θθ θ
 ∂ ∂ ∂ ∂ ∂ ∂ ∂   + + + =    ∂ ∂ ∂ ∂ ∂ ∂ ∂    

 (2.29)
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Derive GENERAL SOLUTION for 1D 
CYLINDER

4/11/2022 37

 by

1

 r

1

0

( )

( )

 b

s

y r

Stea

 

dy 

g

St

I

a

O

t

c

e/Homegeneou

;

 

nte rate n e

1 ,

( )1

(

( ) (

(

)

)

( )
)

0

r

dTk rr gen

gendTr dr kr

gendTr dr kr

dTr dr

dT
d

dr

r

p

S r rgen dr Ckr

S r rgen
kr

Multiple

d dTS r

r

r

t

S r

r

d
r

d

c
dr dt

d

S rd
r

r r

ρ

 
 =   
 

=

÷

− •
+∫

− •

+ =

−
=

− •
=

≤ ≤











1
1 2

1

( )

I G

l

NTE RATE AGAIN

T(r)= n( )
r

dr

S r rgen d

C

rkr
dr C C

r

r

 
 
  
 

 
 
  
 

+∫

− •
∫

 
 
 
 

 
  + +
 
 
∫





Case 1: Sgen = 0, Solid Cylinder
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0

1

1 2

2

T(r)=C ln( )

T(r)=
HOW POSSIBLE ?

:  T(r) is a constant for solid cylinde

EXACT SOLUTION: 

B.C's: 
#1 @r=0 ln(0)
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Case 2: Sgen=0, Cylindrical SHELL 
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Final, Sgen=0, Steady, k=Const
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HDE SPHERE – SS Exact Solution
 SOLID SPHERE
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HDE SPHERE – SS Exact Solution
 SPHERICAL SHELL
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HEAT FLUX – EVERYWHERE
Spherical Shell
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Thermal Response to Plane Wall
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Known: Plane Wall, initially at uniform temperature, is suddenly exposed to 
convective heating.
Find: Differential equation, boundary and initial condition to find T(x,t)?

SCHEMATIC:   
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SCHEMATIC:  

[image: image1.png]
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Thermal Response to Plane Wall

(b) The temperature distributions are shown on the sketch. 
 

 

Sketch “INITIAL”, “STEADY STATE” and 2 intermediate temperature profiles.

iT T∞ >

Note that the gradient at x=0 is always "0" due to wall insulation.
Note that the gradient at x=L, decreases with as we approach SS.


(b) The temperature distributions are shown on the sketch.
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TOTAL ENERGY TO WALL (W)
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Heat Flux vs Time
(Wall and Surface)
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c) The heat flux, ( )xq x,t ,′′  as a function of time, is shown on the sketch for the surfaces x = 0 and 
 x = L. 
          

  

NOTE: For all times, heat flux at wall (x=0) does not change, since wall 
boundary condition at x=0 does not change.

NOTE: As times becomes large at steady state, the surface heat flux (x=L), 
becomes ZERO, as heat is transferred from the convective fluid to the 
entire WALL temperature everywhere will eventually approach that of 
the fluid with NO INTERNAL HEAT GENERATION.


c) The heat flux, 

[image: image1.wmf](


)


x


qx,t,


¢¢


 as a function of time, is shown on the sketch for the surfaces x = 0 and

 x = L.
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Problem 2.37  Surface heat fluxes, heat generation and total rate of radiation
absorption in an irradiated semi-transparent material with a 
prescribed temperature distribution.

KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux. 

FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate  
( )q x ,

 and (c) Expression for absorbed radiation per unit surface area. 

SCHEMATIC:  

 
 

Problem: Non-uniform Generation due to Radiation Absorption
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KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux.


FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate  

[image: image1.wmf](
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 and (c) Expression for absorbed radiation per unit surface area.
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SCHEMATIC:  [image: image1.png]



Problem : Non-uniform Generation (cont.)

ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) 
Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal 
volumetric heat generation term ( )q x .  

ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using 
Fourier’s law,  

 ( ) -ax
x 2

dT Aq = -k = -k - -a e + B
dx ka

  ′′      
 

Front Surface, x=0:  ( )x
A Aq 0 = -k + 1+ B = - +kB
ka a

   ′′       
   < 

Rear Surface, x=L:  ( ) -aL -aL
x

A Aq L = -k + e + B = - e +kB
ka a

   ′′       
 < 

(b)  The heat diffusion equation for the medium is  

 0d dT q d dT+ =      or     q = -k
dx dx k dx dx

   
   
   



  

( ) -ax -axd Aq x = -k + e + B = Ae .
dx ka

 
  



( c ) Performing an energy balance on the medium,  
 in out 0gE - E + E =    

3( , , , )gen
Wq S x y z t
m

≡ →



2( ) axAT x e Bx C
ka

−= − + +
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ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal volumetric heat generation term 
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ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using Fourier’s law,
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Front Surface, x=0:



[image: image1.wmf](


)


x


AA


q0=-k+1+B=-+kB


kaa


éùéù


¢¢


êúêú


ëûëû


g




<

_1366522127




Rear Surface, x=L:
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(b)  The heat diffusion equation for the medium is
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( c ) Performing an energy balance on the medium,
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On a unit area basis  

 ( ) ( ) ( )in out 0 -aL
g x x

AE = -E + E = -q +q L = + 1- e .
a

′′ ′′ ′′ ′′ ′′       < 
 
 

Alternatively, evaluate gE′′  by integration over the volume of the medium, 
 

 ( ) ( )0

LL L -ax -ax -aL
g 0 0

A AE = q x dx = Ae dx = - e = 1- e .
a a
 ′′  ∫ ∫

  

Problem : Non-uniform Generation (cont.)
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On a unit area basis
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Alternatively, evaluate 
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 by integration over the volume of the medium,
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SYSTEMS STUDY
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0 03

On the military outpost Natilas Prime, a new tera forming device has
a bio radiation signature of the form:

( ) (1 ) , , Constants

To contain the radiation, the homegeneous unit (k =

x
gen

B

WS x S e S
m

β β−  = − →  


50W/m-K) is placed within a rectangular 
containment vessel with an adiabatic wall (x=0), and at the other side (x=L) there is a 
lead radiatio insulation barrier of thickness "t" that experiences a con

2

vective heat transfer 
fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct 
of h=450 W/m -K during the darkest nights at a temperature of T =2C.
As chief ther

∞

0

mal systems engineer you are requested to study "lead" thickness  and
impact on SS interface temperature and external surface temperature, as function of
S  and .β



52

Seek Wisdom Do 
You? Do, or do not, 
there is no try.

TRUST THE PATH



SYSTEMS STUDY
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0 03

On the military outpost Natilas Prime, a new tera forming device has
a bio radiation signature of the form:

( ) (1 ) , , Constants

To contain the radiation, the homegeneous unit (k =

x
gen

B

WS x S e S
m

β β−  = − →  


50W/m-K) is placed within a rectangular 
containment vessel with an adiabatic wall (x=0), and at the other side (x=L) there is a 
lead radiatio insulation barrier of thickness "t" that experiences a con

2

vective heat transfer 
fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct 
of h=450 W/m -K during the darkest nights at a temperature of T =2C.
As chief ther

∞

0

mal systems engineer you are requested to study "lead" thickness  and
impact on SS interface temperature and external surface temperature, as function of
S  and .β
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Steady State 
Temperature Formulation

4/11/2022 55

2 0 3

2

0

HDE

(1 )( )

Boundary Conditions

1. 0( )

2. ( ) ( 0)

BIO UNIT

0

x

genB

B B

B

x

B I

WS eS xd T m
dx k k

dT
dx

T x

o

x L

insula

L T

i n

x

t

β−

=

 −   

≥

= =

≤

− −

=

= = =



2

2

0

)

I

0,

Boundary

U

 Conditio

T

ns

1

NSULATION
HDE

0

-k

HEAT FLUX M S  BE SAM

(

E

.

2. ( )

I

I

B
I B

x x

I I

L

I

x t

dT d

d
dx

dk h x t T
dx

k

T x

T
dx dx

t

T T ∞
=∆

= =
= − →

≤ ≤=

− = ∆ −

∆

=

NOTE: Sgen(x) is only being generated within BIO 
UNIT.
NOTE: Two (2) different COORDINATE SYSTEMS



BIO UNIT SOLUTION
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INSULATION SOLUTION
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BOUNDARY CONDITIONS
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INTERFACE and SURFACE TEMPERATURE
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(Lead Insulation Energy Balance)
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2nd Method ONLY provides interface and 
surface  temperatures.

Does NOT provide internal temperature 
distributions within the media.
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Solve HDE for each HT Media with two Boundary Conditions each, 4 total.

Each HDE solution must have individual constant names (4 constants) to 
determine EXACT solution for temperature EVERWHERE within media.

Match Temperature  and Heat Flux at interface between HT media using 
two (2) boundary conditions.

I can always find heat flux and heat rate by via FOURIER’s LAW!!!

Use boundary conditions at interface and outer conditions to solve for 4 
constants.

Check units on constants to ensure no slip-ups on algebra.

Seek to apply OVERALL control volume (if heat FLUX is known at every 
boundary) to determine an outer temperature. This can be used as “one” 
of your boundary conditions if desired. 
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