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Seek Wisdom Do
You? Do, or do not,
there is no try.
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®Developing engineering
solutions to improve mankind
using applied math for idea
creation and analysis, product
development, and realization.







'FLUIDS STUDENT WINTER 2021

What suggestion would you provide to future students to enhance their understanding
and performance within ME-322/420 Fluid Mechanics/Heat Transfer?

Follow that path. Every problem in this class has a similar thought process for
understanding what is happening. It is also very important to have a very strong
understanding of the basic aspects of the fluid dynamics, the first 3-5 weeks will teach you
the most important aspects that will be critical to solving problems for the rest of this class
and for problems in your future. You must understand the basics before you dive into the

deep end of the pool.

What advice would you provide to MECH-322/420 Fluid/Heat Transfer students in Dr.
Berry'’s class to enhance their success and performance?

Make sure to complete the homework but find a way to make sure your answers are
correct, practice done incorrectly will instill bad habits when trying to solve problems. Find
a problem, make sure you can do it correctly, then make sure you can do it over and over
correctly each time. If you can understand the fundamentals, every other problem is the
same path you only start from a different location.
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I will adogt Best Brachices
1 will adopt Best Cractices
I will adogt Best Practices
1 will adopt Best Cractices
I will adogt Best Practices
1 will adogt Best Brachices
1 will adopt Sest Prachices
I will adopt Best Practices
1 will adopt Best Practices
I will adogt Best Practices
1 will adopt Best Crachices

DON'T PRACTICE
UNTIL YOU GET IT
RIGHT. PRACTICE
UNTIL YOU CAN'T
GET IT WRONG




Fourier’s Law e Fourier,s Law //

= q"=—kVT

* A RATE EQUATION that allows determination of the conduction heat flux
from knowledge of the temperature distribution in a medium

» Its most general (vector) form for multidimensional conduction is:

Implications:
— Heat transfer is in the direction of decreasing temperature

(basis for minus sign).

%_______%  — Fourier’s Law serves to define the thermal conductivity of the

|
|/ medium

|

|

n | - — Direction of heat transfer is perpendicular to lines of constant
sotherm =
X

temperature (isotherms).

— Heat flux vector may be resolved into orthogonal components.
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““When” is the CV 15t Law Needed

To find SURFACE temperature only, Ts. (and heat
flux is known at each surface)

e Apply 15t law to CV around entire object
To find initial rate of change of temperature (dT/dt)

When there is no spatial gradients of temperature
“INSIDE” the body;, i.e. a “thin walled tube”.

Apply at “surface” to find energy balance at surfg
determine boundary conditions.

MMMMM

philiprmartin.info



.

Apply 15t Law to SURFACE

s = X dEg E<
Surroundings S = =
T _ E n E out dt S
_|_

_I_
Ein _Eout s

Fluid 9 conduction ~ (q convection T 9 radiation)=0

l i ONLY CONCERNED ABOUT
SURFACE TEMPERATURE.

T
T
L : = KNOW FLUX AT ALL BOUNDARIES
|
X
A

U— Control surfaces

BUT!!!! HOW DO WE FIND TEMP HEAT DIFFUSION
INSIDE OF MEDIUM, LE. T(X) = ? — EQUATION




Think. Chink. think.

2"d Order PDE used to find temperature “INSIDE”
body everywhere. i.e T(x, y,z,time).

e Use Fourier’s Law to now find q(x,y,z,time).
Solve PDE to find (T(x) inside, and even find surface
temperature, Ts = T(x=L).
Requires information at boundary to find arbitrary
constants of integration. Need boundary conditions.

e Use 18t law applied to each “surface” to determine heat
flux boundary conditions.

4/11/2022 9



Heat Equation

—— Tt uation
’//;77’//,;,;5“‘:::::::;/ e ——

3 - A differential equation whose solution provides the temperature distribution in a
stationary medium.

 Based on applying conservation of energy to a differential control volume
through which energy transfer is exclusively by conduction.

« Cartesian Coordinates: DERIVE One-D and Two-D HDE

I+ dr

Gy + dy
S N
£ '
/ '
4

L‘ 27:’?____15-__7! G s dr
Y b A VS
A A/
!4.\' & “ !/d
3D Heat Diffusion Equation J
G e Ciis st oT
—| k,— |+—| k,— |+—| k,— |+S,,,(x,y,2,t) = pc,— (:49)
8x( x@xj @y( y@y] 82( Zﬁzj g (HY,51 = PEp

= =

Net transfer of thermal energy into the Change in thermal

control volume (inflow-outflow) Lot enerpy energy storage

generation
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MECH-422 Heat Transfer
1D HDE CARTESIAN STUDY
AID

K. J. Berry
ELLOW
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BLOOM'S TAXONOMY —

EVALUATING ANALYZING

CRITICALLY EXAMINE INFO
& MAKE JUDGEMENTS EXPLORE RELATIONSHIPS
categorize, examine,

judge, critique, test
defend, criticize organize,
compare/contrast

APPLYING

USE INFO IN A NEW (BUT SIMILAR) FORM

CREATING

USE INFO TO CREATE
SOMETHING NEW

— == design, build,

. plan, construct,

produce,devise, invent

use, diagram, make a chart,
draw, apply, solve, calculate

UNDERSTANDING

UNDERSTANDING & MAKING SENSE
OUT OF INFO

interpret, summarize, explain,
infer, paraphrase, discuss

REMEMBERING

FIND OR REMEMBER INFO

-------- .. ] list, find, name, identify,
locate, describe,
memorize, define

4/11/2022 13



ORE UNDERSTANDIN

To find T(x,y,z,t) INSIDE medium, we MUST
solve 2" ORDER PDE with Boundary
Conditions to obtain EXACT SOLUTIONS.
NO OPTIONS

NO EXCEPTIONS

NO EXCUSES

designed by @ freepik.com
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/TDHD E C3a

|CV = CONTROL VOLUME]

d¥ = Differentia Volume = He D e dx
A = Normal Area to Heat Transfer = He D # F(x)

4/11/2022

Qa5 4,=q. %4, +i[qf;%An]dx

dx

I8t Law Applied to Control Volume
Ein _Eout = Egen = Est = %(Est)

1

Egen = .gen (x)%d‘v’

dT
Est = pcpdVT

dr. ' dT
—%[qx %megen (x)%m = ,Ocp?lﬂdzgﬁ

15



1D HDE CARTESIAN-FINAL—
/ FORM

— 2 [ g3 [Pl + S en(x) 2 HPelx = po, HPex 2L
HDE
¢y e o Ol

dx [QX mz}—i_Sgen(x) e —,OCp dt
FOURIER's LAW

diy e dL
qx = kx%
e re e er
dX{ X Cl’X mz}"Sgen(x)mg, _pcp dt
REDUCTIONS
HOMOGENOQUS : k,=constant # f(x)
d°T , SgenX) _ pCp dT _1dT

dx? k: ki adr

2
a=THERMAL DIFFUSIVITY= ks [m—}measure of speed of heat diffusion

yole

P A)

4/11/2022 16



~~—MOST GENERA

Assume steady state 1D Heat Transfer in a plain wall of
width L, height H and depth D. Determine the most

“GENERAL SOLUTION " Assume homogeneous
medium for temperature T(x) within medium.

Start with general form of HDE:

42T Sgen(x)_pcp AT ;IZ— .
dx2+ kx i kx 5 PR =0; Steady State

Integrate with respect to “x” to express in terms of
arbitrary constants of integration.

St
> o =4 : : :
dx e Most General Solution until we specify:
dz{ _ ng? (x) 1. BOUNDARY CONDITIONS
e e 2. Form of internal heat generation rate, S =
o
dx e :

Kk

4/11/2022 17
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/
T e

" EXACT SOLUTION ROADMAP

NEED BOUNDARY CONDITIONS (one
condition at each boundary):

2nd Order in Space Requires Two (2) Boundary Conditions

Ist Order in Time requires One (1) Initial Condition

Constant Surface Temperature:

Insulated Surface

Boundary Condition

Boundary Condition .
T(x, 1) (= X".t)=T, > CONST. TEMP. ———*|i (Ej =0 INSULATION
T(x, 1) =

f—x

Constant Heat Flux: oT

Applied Flux Convection: K- k=0="7 I:T w-T (O’I)]
T, 1) |

Boundary Condition

Boundary Condition

(_k %TJ = (T, ~T,) - CONVECTION
x=X"

4/11/2022 18



~— ROAD MAP EXACT Solution

A plain wall experiences an internal heat generation rate of the form:
S pon()=5, 7 sin(FR),0<x< L

immsse e ur
with Boundary Conditions defined as:
1) x=0; Insulated, == I _ Ttx, )
dx x=0

2)x=L, Convective Fluid. >

4 co;z?’;cnon = convection 10, 0.

- e S

i
7 Sl
s Sm( Xy Pttt
T(x)z_H k PEm b e e e e
X

2
T(x) = i(ﬁj sin(Z2)+C ex+C,
k \rm L

4/11/2022 19




~ —FINDC1landC

s " sin(ZH) 1) =2 £ sinZ)- (Lo,
T(X)ZII = dxdx+C ex+C,;;0<x<L «\7 L ST
i kx BC#2:
| _ e CZ _ =WI(x=0)-T.)
: So ) R o So( L), S
T(x):ﬂ(£J sin(=)+C ex+C —kl{k—x ,J T —(;ﬂ—h[—ﬂ;j L+G, Tw}
T
s Sy o S G
_kx|: Cos (7)_7 i :I
e e o k"(”j LJ +&[£j-L+Tm
—=—| — | cos(—)+C, 2 h k. \ 7
dx  k\z L UNIT CHECK
BC#1 R
| lf—"[%j-La—”ﬁj m* — K
d_T :O:i £J COS(”.O)'FC m—K
dxx=0 kx 7T % E3
S. L W m K f[ﬁ}* W ok
C = ——‘{—j - e R e m*>—K
G Wim-—K 2 [—SO(L)(1+COS(”L)}
2 G T L S, (L LT
R SRR b L i = +—(;)- I
T(x)=—| —| sin(—)— e D .
k \ 7 Y B e sk S°(£)0L+T
A N
EXACT SOLUTION

4/11/2022

X X

2S°L+S°[LjoL+Tw

X

C.=

2 zh

2
T(x) =%[§j sin(%)—lf—o[%]oxwt C,

20




/

/ ———
—

wWm3| m |wmk|wm2ek| k [ km | K

S0 L Kx h T c1 c2

20000 10 2000 2000 500  -31.83102 881.9721861

1D HDE Solution
X T o s(x) Wall Sinusoidal Heat Generation
0 881.9722 0 0
0.5 |881.9068| 783.7839| 3128.687 S i 2o
1 881.4512 | 3115.836 | 6180.335 ss0d NOTE: T
1.5 | 880.2246| 6938.735 | 9079.803 ZERO NOTE: 20000
2 877.8653 | 12158.35| 11755.7 sooq WALL Increasing L 1.0e+5
25 | 874.0396| 18646.15 | 14142.13 = gfg‘le gll‘;’s‘ :rsto sone S o000
3 868.4498 | 26242.39| 16180.33 & S s g
3.5 |860.8416| 34760.02 | 17820.12 & 7004 L 6oers B} 10000 >
4 851.0104 | 43989.32| 19021.12 2 % g
45 |838.8065] 53703.02| 19753.76 o b R .
5 824.1385| 63661.95| 20000 — e
5.5 |806.9755| 73620.88| 19753.77
6 |787.3485 83334.58| 1902114 550 1 L e
6.5 |765.3487|92563.89| 17820.15 & Heat
7 741.1259 | 101081.5 | 16180.36 : Tanster | ; : 27 i
7.5 | 714.8847| 108677.8| 14142.16 —
8 686.8794 | 115165.6 | 11755.74 )
e X VS T(X) S L . TX S L

8.5 |657.4077| 120385.3| 9079.85 —0= X vs a(x) T(x):ko[] s1n(L)—k°[Jox+C2
9 626.8033 | 124208.2 | 6180.385 === X vs Sgen(x) 7 I\
9.5 |595.4279| 126540.3| 3128.739 czzz’SoLJrso(L]. L+T,
10 | 563.6623| 127324.1| 0.053072 zh K. \7

4/11/2022



— Find Surface Temperature

Two (2) Methods

EXACT SOLUTION OVERALL ENERGY BALANCE
_SO L 2 . TTX SO L Eout+Egen_O
r (x)_k_x[EJ SN, 7)) G =] gen<x»dv=HDj S (¥l
vV
2S,L , Sy L
Sy(LY
Tetisen- 2] (c
:‘%@'“Q \(“ bv “
:—%(%}oL+881.97
_ 20,000 /m’ 100m° _ — 20,0000 /md—— 204500k

20000 /m-K x
=563.7K

720000 | m*-K
=563.66K

4/11/2022
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=

/ .

: E 77777\\%,, = T —
,/ KNOW YOUR HEAT DIFFUSION EQUATION (HDE)

(SPECIAL CASE)
* One-Dimensional Conduction in a Planar Medium with Constant Properties
and NO GENERATION
= o1 oT
E =
ox Ox Ot
becomes )
cf | oF
8x2 8t
= kx : S : |:m2 /Sj'
PCy

4/11/2022 23



Boundary Conditions

oundary-and Initial Condltlons/

f transient conduction, Heat Diffusion Equation (HDE) is first order in time, requiring
specification of an initial temperature distribution:

« Since HEAT DIFFUSION EQUATION (HDE) is second order in space, two boundary
conditions, must be specified. Some common cases:

2nd Order in Space Requires Two (2) Boundary Conditions

st Order in Time requires One (1) Initial Condition

Constant Surface Temperature

Insulated Surface
_— Boundary Condition
Boundary Condition T
T 4 (T(x=X",t)=T, > CONST. TEMP.J} ~ [T~ (EJ =0 INSULATION
(x, 1) —
F—x
Constant Heat Flux:
Applied Flux Convection:
Boundary Condition o, n

Boundary Condition

k—j =g, - HEAT FLUX i dT
dx ) _y foor B ( kd—j =T, -T,) - CONVECTION
x=X"

’ X
4/11/2022 T T T
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1D Cylindrical HDE==—

‘ A = Radial Area Normal to Heat Transfer:2 7Z'I‘L‘
CONTROL VOLUME

Sgen (7"), 0, Cp’

7

4/11/2022 26



Apply 15t Law

- - = dEst

—I._ " "
Ein =qyr Ay

A, =27zr o L(normal to Heat Transfer)

-t " d 2

= +[ 1 }dr

Honl = - q, Ay

_|'_ = w : W -

Egen = (r)—3.dv:Sgen (’”)—30/1,, odr
i m

4/11/2022 -



Cylmdrlcal HDE

= dEgt \ dTl
Ein = Eout Egen B

dr
2 dr

_%(q;szL)dr + Sgen (r)e2zrLedr=p2rrLedrec

d " ; dT
_W(q’”r)md’ursgen(’”)'mdr'r ZpMdroroch

Ed " : dT
_7%(q7””)+Sgen(’”) =

Fourier's Law

‘ dT
rdr(k” )+Sgen(’”):,0‘cpﬁ

4/11/2022 -



1D Cylindrica

= adl
;d_(k )+ L) —pec, =
REDUCTIONS

Homogeneous — k= # F(r)

1 d( dT)_I_Sgen(rat):p'Cp dT_ 1 dT
rdr 9 k T O o dr

r r

dT
STEADY STATE > —— =0

dt

e o 5
v = =
rdr( d )

I k
4/11/2022
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Heat Flux Components (cont.)

mular coordinates (¢ or §,60 ), the temb’é’raturé’gradlent is st111

: based on temperature change over a length scale and hence has
units of °C/m and not °C/deg.

 Heat rate for one-dimensional, radial conduction in a cylinder or sphere:

— Cylinder W
(= (27er[m2J)q,, [ } — Watts
m*
or,
w Watts
= 2Tk — |
q, r%f ( [ ])%’ |:m2 :| Length
— Sphere
2 " w
== (47rr [ J)qr [—2} — Watts
m

4/11/2022 30



1D Spherical

i( ke, — ' — 1 d
Ox Ox t
2D Cartesian

O

S o A
(kr )+Sgen(r t) ,OCp dt

g (k G_Tj +
Ox Ox

1D Cylindrical
1 d dT
;d_(kr’”d )+Sgen(r t)= PCp—— dt
2D Cylindrical

1 d dr~ d . dar. ¢ dT
;E(k ——) d_(kzdr)-l_Sgen(r?Z’t):pcpE

a = — thermal diffusivity of the medium [mz . S:|
4/11/2022 ,OCp 31



G Bl s e B

SOLVE
e Temp-Temp

e Temp-Insulation
e Temp-Convection
e Temp-Heat Flux

4/11/2022 32



1. Solve 1D HDE for Cartesian,
Cylindrical and Spherical to obtain
EXACT solution for T(x), T(r); and
variable Sgen(x), Sgen (r).

2. Be able to obtain solution for any
of the three specified cases for
Boundary Conditions

UNTIL YOU GET IT ,
RIGHT. PRAGTIGE

UNTIL YU CANT el il =
GET IT WRONG.

WWW.LIVELIFEHAPPY.COM



Conduction Analysis

Typical Methodology of a ConductionAnalysi:

* Consider possible microscale or nanoscale effects in problems involving very
small physical dimensions or very rapid changes in heat or cooling rates.

* Solve appropriate form of heat equation to obtain the temperature
distribution.

« Knowing the temperature distribution, apply Fourier’s Law to obtain the
heat flux at any time, location and direction of interest.
* Applications:
Chapter 3: One-Dimensional, Steady-State Conduction

Chapter 4: Two-Dimensional, Steady-State Conduction
Chapter5: Transient Conduction

4/11/2022 34



Heat Flux Components

/ Cartesian Coordinates:

~

— — — —
q” e —kxa—T o kya—T | = kza—Tk (2.3)
N ax N ayj ﬁZ
z * Cylindrical Coordinates:
- - ~> -
q”:_kra_T e k¢a_T] it kza_Tk (2.24)
or rog 0z

* Spherical Coordinates:

— — — —
q" =k, @_T i —| kg 8_T T k¢ .GT k (2.27)
or \r@& \ rst(JM

N J

4/11/2022
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.
NPT YEac
Cl

1. ] g.--ﬁ-s'-_v OTC

g

e oT iae Cilie e Cimeas oT
——(krr—j +——[k¢ —J [k —j + S X 2,0 = pe, —

2 00

re or or ) r*sin®0 0¢

4/11/2022

(2.26)

1 0 > OT | 0 oT 1 0 Rl e e oT
——| k.r - k + kyosin@— |+S, (x,v,z,t)= pc, — (2.29)
(r j ("’ ] r2sin@ (9 a@j gen (02200 = PCp o)

36



Derive OLUTION for 1D

LINBDER 1= . dT
7%(/€FV7) =2 Sgen(rﬂt) — pCp Z
Steady State/Homegeneous

Ms‘ ld(rdT):—Sgen(r); OSI"SVO
rodrdr ks
ey Multiple by r

d (r dT) s _Sgen(r).r
di= k

7

Integrate Once

dTr _Sgen Crysr:

+~byr

g f —Sgen (r)er ¢
- [J [ kr JJFJ =

INTEGRATE AGAIN

T(r)= j [’{ I{Sgegr(’”)"”}rJdr + C;In(r) + C,

4/11/2022 37
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- HEAT FLUX
EXACT SOLUTION: o Kz -k ar k (&
m dr
B.C's:
#1 @r=0 — but In(0) — —oo I
#2 (@r=r,
#1:T(r =0) - Must Exist & Be Finite > C; =0 j
T(r)=C, |

NOTE: T(r) 1s not a function of k, - HOW POSSIBLE ?
NOTE : T(r) is a constant for solid cylinder and SS, and Sgen = 0.
FINAL: T(r)=T,

38



Case 2: Sgen=0, Cylindrical SHELL
T@)=C;In(r)+Cy; 1 <r<r
EXACT SOLUTION:
BCH#1:T(r=1)=T,BCH#2:T(T=1,) =T,
#1:11=Cy In(r) + C5,C) = 11-Cy In(n)
#2:1,=C, In(r,) + G,
I, =CyIn(ry) + I;-C; In(#)
c i g _)[L] ~
In(ry) =In(r;) In(r, /7) In(r)
Gy =1;-C In(r)
L -1
1n(2r2 /;l)ln(ﬁ)%[K]

4/11/2022 39
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Final, Sgen=0, Steady; k=Canst-="
T(r)=CyIn(r)+C,

Bty By
In(ry / 1) In(r, / 1)

5
In(r, /17)

(=

L

HEAT FLUX
1, -1,
In(r, /7;)

W dT C,

" 2 = __}k - — __}% e —_}%
qrm2 rdl/‘ r},« B )

1] ll " W
gqW]l=q,—54,=q,—5*27rL
4/11/2022 ~ -




- HDE — SS Exact Solution

e SOLID SPHERE

HOMEGENOUS —-SOLID SPHERE

Lo = 2% ﬂ/ =0 —> INTEGRATE TWICE |

P2 dr ar)

() ==+ C,;0 < < r > MOST GENERAL SOLUTION
r

BOUNDARY CONDITIONS - SPECIAL CASE A
1. T(r=0) — FINITE - C; =0

2. T(r=1y) =T,(known) > C, =T,

EXACT

IT(r)=1,

s ar _, OTHER BOUNDARY CONDITIONS WILL
dr RESULT IN OTHER EXACT SOLUTIONS.

4/11/2022 M




HDE =" HERE =SS Exact Solution

SPHERICAL SHELL EXACT SOLUTION

HOMEGENOUS —-SOLID SPHERE .~ =

B SgertT-1) e gt :0.'?: ';;:_j_" i ,

T(l”):——l-l—Cz;rlSrgrz_) \\\.__
r &

MOST GENERAL SOLUTION
BOUNDARY CONDITIONS - SPECIAL CASE A

LEEen)=T

EXACT

1.7(=n)=1; :—QJFC2 —C, =T, +Q_?[K]
<] A
£ ’”1 A )

ronec -ty e - 2ol g, | OTHER BOUNDARY CONDITIONS WILL
: A1 RESULT IN OTHER EXACT SOLUTIONS.

4/11/2022 1 2 42



HEAT FLUX = EVERYWHERE
“Spherical Shell _

T v = : o == : ([ ] 2
T(If') = Ti + 2 Ti (l _l),l/«l <r< 7 Q[W] q’,(l/') Arsphere QI”(F) 4rr

= N
et S S 2
(r1 ’”2) g[W]= L Ay
" dT ¢ T Heh
)=k - S i - —
dr r e —2 1 _, CONSTANT = F(1)
Heilo
" dT k T Vi T
P=—k———— 2l
7
e /4 &

., - OTHER BOUNDARY CONDITIONS WILL
q,(r)~r RESULT IN OTHER EXACT SOLUTIONS.
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//

Thermal Response to Plane Wall

Insulation—f}:"ﬁ

Known: Plane Wall, initially at uniform temperature, is suddenly exposed to

convective heating.
Find: Differential equation, boundary and initial condition to find T(x,t)?

4/11/2022

HDFE
T PCs O 1T

Ox?> e
Initial Condition

T(x.,t=0)=T;
Boundary Conditions

o o -x%E per T Ty
dx S ety o

44



SCHEMATIC:  

[image: image1.png]>x L







B

“Thermal Response to Plane Wall

Sketch “INITIAL’, “STEADY STATE” and 2 intermediate temperature profiles.

T. Sfead Y-S fa 'I’E
“l T 7,0
T(x1) E [ 00 > T;
I; i"'Imfia/, 16,0)
. >

4/11/2022
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(b) The temperature distributions are shown on the sketch.


[image: image1.png]. Oteady-state,
. T(x,00)

<Lnitial T(x,0)







" W
E, = qu — L,t)—zASdt
0

m

By =hd, | (T - T(Lt))dt > [J]

TOTAL ENERGY TO WALL (W/V)

s 7

I;n :V:ASL.[O ( OO-T(L,I))df )_m3_

222222222



/ (Wall and Surface)

?x x T
“INC ~2n9

0 <2, 0)

Tt

NOTE: For all times, heat flux at wall (x=0) does not change, since wall
boundary condition at x=0 does not change.

NOTE: As times becomes large at steady state, the surface heat flux (x=L),
becomes ZEROQO, as heat is transferred from the convective fluid to the

entire WALL temperature everywhere will eventually approach that of
the fluid with NO INTERNAL HEAT GENERATION.
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c) The heat flux, 

[image: image1.wmf](
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qx,t,
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 as a function of time, is shown on the sketch for the surfaces x = 0 and

 x = L.
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Problem: Non-uniform Generation due to Radiation Absorption

Problem 2.37 Surface heat fluxes, heat generation and total rate of radiation
absorption in an irradiated semi-transparent material with a
prescribed temperature distribution.

Laser irradiation

Semitransparent medium, 7(x)

KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux.

FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate
q ( x), and (c) Expression for absorbed radiation per unit surface area.

SCHEMATIC:
l l[ aser irradiation

¥x Semi‘fransparenf medium,

T, €3+ Bx+C
L

4/11/2022 48



KNOWN:  Temperature distribution in a semi-transparent medium subjected to radiative flux.


FIND:  (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate  
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 and (c) Expression for absorbed radiation per unit surface area.
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Problem : Non-uniform Generation (cont.)

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3)
Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal

volumetric heat generation term ¢ (x)

ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found using
Fourier’s law,

dT
n — _k il — _k
I [dx} [

Front Surface, x=0:

Rear Surface, x=L:

(b) The heat diffusion equation for the medium is

i(d—TjJri:O or q'=—ki(d—Tj
dx \ dx k dx\ dx

g(x)= —kiPie"”‘ +B} = Ade™™.

L w
qESoen(x’y’Z’t)_)_3
: m

dx| ka

( ¢ ) Performing an energy balance on the medium,

Ein 'Eout +Eg =0
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ASSUMPTIONS:  (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal volumetric heat generation term 
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ANALYSIS:  (a) Knowing the temperature distribution, the surface heat fluxes are found using Fourier’s law,
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Front Surface, x=0:
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Rear Surface, x=L:
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(b)  The heat diffusion equation for the medium is
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( c ) Performing an energy balance on the medium,
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Problem : Non-uniform Generation (cont.)

On a unit area basis

A U " " A -
Bl =B +El, = qx(0)+qx(L)=+;(]—eaL).

Alternatively, evaluate E g by integration over the volume of the medium,

A A

Eg = OLq'(x)dxz IOLAe'axdxz -—[e'ax]s =—(]—e'aL).

a a

NOTE: ON A UNIT AREA BASIS (WIDTH x DEPTH)
-> NORMAL TO HEAT FLOW

FOR A PLAIN WALL

E,[W]=4, j S (%) }dx A, — AREA NORMAL TO HEAT FLOW

gen

s Ja
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On a unit area basis
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Alternatively, evaluate 
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 by integration over the volume of the medium,
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==

SYSTEMS STUDY

On the military outpost Natilas Prime, a new tera forming device has

a bio radiation signature of the form:

S gen () = S (1= ) {%} ,S,, f — Constants

To contain the radiation, the homegeneous unit (k ,=50W/m-K) 1s placed within a rectangular
containment vessel with an adiabatic wall (x=0), and at the other side (x=L) there is a

lead radiatio insulation barrier of thickness "t" that experiences a convective heat transfer

fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct
of h=450 W/m*-K during the darkest nights at a temperature of T_=2C.
As chief thermal systems engineer you are requested to study "lead" thickness and

impact on SS interface temperature and external surface temperature, as function of
S, and p.
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Seek Wisdom Do
You? Do, or do not,
there is no try.
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==

SYSTEMS STUDY

On the military outpost Natilas Prime, a new tera forming device has

a bio radiation signature of the form:

S gen () = S (1= ) {%} ,S,, f — Constants

To contain the radiation, the homegeneous unit (k ,=50W/m-K) 1s placed within a rectangular
containment vessel with an adiabatic wall (x=0), and at the other side (x=L) there is a

lead radiatio insulation barrier of thickness "t" that experiences a convective heat transfer

fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct
of h=450 W/m*-K during the darkest nights at a temperature of T_=2C.
As chief thermal systems engineer you are requested to study "lead" thickness and

impact on SS interface temperature and external surface temperature, as function of
S, and p.
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I; = Interface

T = Surafce

Sgen(x) = SO(1 _eﬂx)|:z3:|a
m

S,, f — Constants

L B AT

>X "

54



~Steady:State
/ e )
Temperature Formulation

BIO UNIT INSULATION
HDE
HDE =
( - )[ Ci: = ==
S l—e" )| e’
d’T, = S gen (x) = - Boundary Conditions
2
dx k, k, - ot dT, -
0= T Cha =
. HEAT FLUX MUST BE SAME
Boundary Conditions aT
dT 2.—k,— =h{T,(x=A0)-T)
. = O(insulation) e
dx x=0

NOTE: Sgen(x) is only being generated within BIO
UNIT.
NOTE: Two (2) different COORDINATE SYSTEMS
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~ BIOUNT

GENERAL SOLUTION
0<x<L

w
2 e Toe e
T 0 )[m}

e ky
Integrate
= —px
dl; _ -5, = e
dx kg =
BOUNDARY CONDITION - #1
- 1
2 5 (0——)+C,
dx x=0 kB _ﬂ
s
s % o m -
kg ia l m
m—K m
Integrate
iy 2 —fx
e e o
e
i 2: —fx
e = e o

4/11/202!€B 2 182 kBﬁ

T = Interface

T = Surafce

S () =8, (1- e‘ﬂﬂ[q, S
m

S,, B — Constants

e

L e h,T
—X "
éqx



T, = Interface

T # Surafce
Sgen (x)=S5,d- e_ﬁx)[%:l )
2T S,, 3 — Constants
a L =0,0<x< At o
dx .
e - L AV I
BOUNDARY CONDITIONS - #2/3/4 X q"
—
2. T.(x=0)=T,(x = L) — TEMPS MUST BE SAME -
3k ﬂ =k al; — HEAT FLUX MUST BE SAME
dx x=0 dx F=1
1
e e s
X x=At
MOST GENERAL SOLUTION

T,(x)=Dx+D,
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~BOUNDARY CONDITIONS

3 UNKNOWNS
C,,D,,D,
3 BOUNDARY CONDITIONS

EQUATE TWO SOLUTIONS AT INTERFACE

BIO UNIT —

7, =" [’Cz = ﬁf} >
ky \2 0 kp o

LEAD INSULATION —

I, (x)=Dx+D, >0<x<At

x+C,>0<x<L

EQUATE - BC#2
T.(x=0)=T,(x=L)—> TEMPS MUST BE SAME

. 2 -BL
D, = S[L e — |+ % L+C,
ky (2 P

BC#3
-k, d—T =—k, di — HEAT FLUX MUST BE SAME
dx »=0 dx -1

-5 et

(=k;)D, =k, (—O(L ——j —)
kB _ﬂ BIB

—,BL
—(=S (L— SO)
- -B) B

1

2 -
C, D+S—[L ¢

(=k;)

k| 2

]_i
p
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Boundary Condition#4 = =

: MOundm’y:

q. (conduction) = q_(convection)

dr,

& L WA T

I/
dx =)
== =
= _k]Dl

L) p

— DAL
k[
D, =-D, (IJF At)+T,
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I’ = Interface

T
Sgen(x) - So(l_e_ﬂX)I: VV3 :|’
m

S,,  — Constants

£ Surafce

29



SO

Tp(x)= = [x2 = e_ﬂx]+

i
LEAD INSULATION —

kg

S oD S0y

p

+ -
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I'(x)=Dx+D, >0<x< At

( ) W
—pL SO 3
—(—SO{W} o = {m }

3
m
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S

'UNIT CHECK (BIO UNIT)

= 2 L
T.(x)= OE k¢ + % x+C S50=x=1L (7 ~a.
7 k,p

4/11/2022 63



4/11/2022

RFACE AND SURFACE TEMPERATURES

INTERFACE TEMPERATURE
BIO UNIT —

2 —px
B 0(362 —eﬂz j+kS(,)8x+C2_)OSXSL
B

=5 (el S
B

SURFACE TEMPERATURE
LEAD INSULATION —
Db 50 v -y
let x=At¢

I'(x=At)=DAt+ D,




/BﬁNIT "W A L Ln

— fx

TEMPERATURE

_SO x2 .
TB(_X,'): k 2 - ﬂz
B

Let x=0
S
Ky

TB (x = O) = Twall =
k]
D2 = _Q(I -+ At) ot TOO

cC =D +

)-l— SO x—l—C2 S v T
Y

1
-
( ,B)+

kB 2 ﬂz
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Method

INTERFACE and SURFACE TEMPERATURE
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SURFACE TEMPERATURE, Ts = 7

S (x)= S, (1- e‘ﬂx)[g} ,8,,f — Constants,0 < x <L
m

gen

Overall Energy Balance at SS (BIO UNIT + INSULATION)
Egen i EOHZ = hAS (7—; - TOO)

5 5
]’; o gen + TOO == gen + TOO
hd, h(HD)

j S (x)dV,dV = HDdx

gen

s
= e
E -~ HDS, j (1-e)dx = HDS,(x——), ,
0
. e_'BL 1 1 SR
E,,, = HDS,(L— _Z) — HDS, (L —E(e +1))

(HD)S,(L- % (e 7" +1))

I
h(HD) -
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(Lead Insulation Energy Balance)

hA(T. —T.)

Convection

.| |Steady State
Sgen = O

dI _(I,-T) _ Egen
ax At —k, Ac

Egen[W]e At[m]

s | ;

m —

I=T+




= Method ONLY prov1des 1nterface and
surface temperatures.

Does NOT provide internal temperature
distributions within the media.

e
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HIGH LEVEL ROADMAP

Solve HDE for each HT Media with two Boundary Conditions each, 4 total.

Each HDE solution must have individual constant names (4 constants) to
determine EXACT solution for temperature EVERWHERE within media.

Match Temperature and Heat Flux at interface between HT media using
two (2) boundary conditions.

I can always find heat flux and heat rate by via FOURIER’s LAW!!!

Use boundary conditions at interface and outer conditions to solve for 4
constants.

Check units on constants to ensure no slip-ups on algebra.

Seek to apply OVERALL control volume (if heat FLUX is known at every
boundary) to determine an outer temperature. This can be used as “one”
of your boundary conditions if desired.
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