Fourier's Law and the

- Chapter Two
\qquad

TRUST THE PATH

ENGINEERING

PRODUCT DEVELOPMENT

\bullet Developing engineering solutions to improve mankind using applied math for idea creation and analysis, product development, and realization.

EEUIDS STUDENT WINTER 2021

What suggestion would you provide to future students to enhance their understanding and performance within ME-322/420 Fluid Mechanics/Heat Transfer?

Follow that path. Every problem in this class has a similar thought process for understanding what is happening. It is also very important to have a very strong understanding of the basic aspects of the fluid dynamics, the first 3-5 weeks will teach you the most important aspects that will be critical to solving problems for the rest of this class and for problems in your future. You must understand the basics before you dive into the deep end of the pool.

What advice would you provide to MECH-322/420 Fluid/Heat Transfer students in Dr. Berry's class to enhance their success and performance?

Make sure to complete the homework but find a way to make sure your answers are correct, practice done incorrectly will instill bad habits when trying to solve problems. Find a problem, make sure you can do it correctly, then make sure you can do it over and over correctly each time. If you can understand the fundamentals, every other problem is the same path you only start from a different location.

- NO SUCCESS WITHOUT PRACTICE

DON'T PRACTICE UNTIL YOU GET IT RIGHT. PRACTICE UNTIL YOU CAN'T GET IT WRONG

Fourier's Law

$$
q^{\prime \prime}=-k \nabla T
$$

- A RATE EQUATION that allows determination of the conduction heat flux from knowledge of the temperature distribution in a medium
- Its most general (vector) form for multidimensional conduction is:

Implications:

- Heat transfer is in the direction of decreasing temperature (basis for minus sign).

- Fourier's Law serves to define the thermal conductivity of the medium
- Direction of heat transfer is perpendicular to lines of constant
temperature (isotherms).
- Heat flux vector may be resolved into orthogonal components.

"When" is the CV 1 ${ }^{\text {st }}$ Law Needed

- To find SURFACE temperature only, Ts. (and heat flux is known at each surface)
- Apply $1^{\text {st }}$ law to CV around entire object
- To find initial rate of change of temperature (dT/dt)
- When there is no spatial gradients of temperature "INSIDE" the body, i.e. a "thin walled tube".
- Apply at "surface" to find energy balance at surface to determine boundary conditions.

Apply $1^{\text {st }}$ Law to SURFACE

BUT!!!! HOW DO WE FIND TEMP INSIDE OF MEDIUM, I.E. T(X) = ?

HEAT DIFFUSION EQUATION

Heat Diffusion Equation ??

Think. think. think.

- $2^{\text {nd }}$ Order PDE used to find temperature "INSIDE" body everywhere. i.e T(x, y,z,time).
- Use Fourier's Law to now find $q(x, y, z$, time $)$.
- Solve PDE to find (T(x) inside, and even find surface temperature, $\mathrm{Ts}=\mathrm{T}(\mathrm{x}=\mathrm{L})$.
- Requires information at boundary to find arbitrary constants of integration. Need boundary conditions.
- Use $1^{\text {st }}$ law applied to each "surface" to determine heat flux boundary conditions.

The Heat Equation

- A differential equation whose solution provides the temperature distribution in a stationary medium.
- Based on applying conservation of energy to a differential control volume through which energy transfer is exclusively by conduction.
- Cartesian Coordinates:

DERIVE One-D and Two-D HDE

$$
\frac{\partial}{\partial x}(\underbrace{\left.k_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial T}{\partial y}\right)+\frac{\partial}{\partial z}\left(k_{z} \frac{\partial T}{\partial z}\right)+\dot{S}_{g e n}(x, y, z, t)=\rho c_{p} \frac{\partial T}{\partial t}}_{\begin{array}{c}
\text { Net transfer of thermal energy into the } \\
\text { control volume (inflow-outflow) }
\end{array}}
$$

MECH-422 Heat Transfer 1D HDE CARTESIAN STUDY AID

Dr. K. J. Berry ASME FELLOW

...Memorization Without

Understanding Leads to...!

Fast \pm Fluent

BLOOM'S TAXONOMY

CREATING USE INFO TO CREATE SOMETHING NEW
 EVALUATING CRITICALLY EXAMINE INFO \& MAKE JUDGEMENTS judge, critique, test defend, criticize
 APPLYING
 USE INFO IN A NEW (BUT SIMILAR) FORM use, diagram, make a chart, draw, apply, solve, calculate
 UNDERSTANDING
 UNDERSTANDING \& MAKING SENSE OUT OF INFO
 interpret, summarize, explain, infer, paraphrase, discuss

CORE UNDERSTANDING

To find $T(x, y, z, t)$ INSIDE medium, we MUST solve $2^{\text {nd }}$ ORDER PDE with Boundary Conditions to obtain EXACT SOLUTIONS.

NO OPTIONS

NO EXCEPTIONS

NO EXCUSES

1D HDE Cartesian

1D HDE CARTESIAN FINAL FORM

$-\frac{d}{d x}\left[q_{x}^{\prime \prime} \frac{W}{m^{2}}\right] H D d x+\dot{S}_{g e n}(x) \frac{W}{m^{3}} 7 D D d x=\rho c_{p} A D d x \frac{d T}{d t}$
HDE
$-\frac{d}{d x}\left[q_{x}^{\prime \prime} \frac{W}{m^{2}}\right]+\dot{S}_{\text {gen }}(x) \frac{W}{m^{3}}=\rho c_{p} \frac{d T}{d t}$
FOURIER's LAW
$q_{x}^{\prime \prime}=-k_{x} \frac{d T}{d x}$
$-\frac{d}{d x}\left[-k_{x} \frac{d T}{d x} \frac{W}{m^{2}}\right]+\dot{S}_{g e n}(x) \frac{W}{m^{3}}=\rho c_{p} \frac{d T}{d t}$
REDUCTIONS
HOMOGENOUS: $\mathrm{k}_{x}=$ constant $\neq \mathrm{f}(\mathrm{x})$
$\frac{d^{2} T}{d x^{2}}+\frac{\dot{S}_{g e n}(x)}{\mathrm{k}_{x}}=\frac{\rho c_{p}}{\mathrm{k}_{x}} \frac{d T}{d t}=\frac{1}{\alpha} \frac{d T}{d t}$
$\alpha \equiv$ THERMAL DIFFUSIVITY $=\frac{k_{x}}{\rho c_{p}}\left[\frac{m^{2}}{s}\right]$;measure of speed of heat diffusion

MOST GENERAL SOLUTION

- Assume steady state 1D Heat Transfer in a plain wall of width L, height H and depth D. Determine the most "GENERAL SOLUTION ". Assume homogeneous medium for temperature $T(x)$ within medium.
- Start with general form of HDE:

$$
\frac{d^{2} T}{d x^{2}}+\frac{\dot{S}_{g e n}(x)}{\mathrm{k}_{x}}=\frac{\rho c_{p}}{\mathrm{k}_{x}} \frac{d T}{d t}=\frac{1}{\alpha} \frac{d \nmid}{d t}=0 ; \text { Steady State }
$$

- Integrate with respect to "x" to express in terms of arbitrary constants of integration.

$$
\begin{aligned}
& \frac{d^{2} T}{d x^{2}}+\frac{\dot{S}_{\text {gen }}(x)}{\mathrm{k}_{x}}=0 \\
& \frac{d^{2} T}{d x^{2}}=-\frac{\dot{S}_{\text {gen }}(x)}{\mathrm{k}_{x}} \\
& \frac{d T}{d x}=\int_{x}-\frac{\dot{S}_{\text {gen }}(x)}{\mathrm{k}_{x}} d x+C_{1} \\
& \left.T(x)=\int_{x} \int_{x}-\frac{\dot{S}_{\text {gen }}(x)}{\mathrm{k}_{x}} d x\right] d x+C_{1} \bullet x+C_{2} ; 0 \leq x \leq L \\
& 4 / \mathrm{n} / 2022
\end{aligned}
$$

Most General Solution until we specify:

1. BOUNDARY CONDITIONS
2. Form of internal heat generation rate, $\dot{\mathrm{S}}_{g e n}(x)$

EXACT SOLUTION ROADMAP - NEED BOUNDARY CONDITIONS (one condition at each boundary):

Find PARAMETRIC

ROAD MAP EXACT Solution

A plain wall experiences an internal heat generation rate of the form:

$$
\dot{\mathrm{S}}_{\text {gen }}(x)=S_{0} \frac{W}{m^{3}} \sin \left(\frac{\pi x}{L}\right) ; 0 \leq x \leq L
$$

with Boundary Conditions defined as:

1) $x=0$; Insulated, $\rightarrow \frac{d T}{d x}{ }_{x=0}=0$
2) $x=L$, Convective Fluid.

$$
\begin{aligned}
& \rightarrow \mathrm{q}_{\text {conduction }}=q_{\text {convection }} \\
& \rightarrow-k_{x} \frac{d T}{d x}=h\left(T_{s}-T_{\infty}\right)=h\left(T_{(x=L)}-T_{\infty}\right)
\end{aligned}
$$

$$
T(x)=\int_{x x}\left[-\frac{S_{0} \frac{W}{m^{3}} \sin \left(\frac{\pi x}{L}\right)}{\mathrm{k}_{x}} d x\right] d x+C_{1} \bullet x+C_{2} ; 0 \leq x \leq L
$$

$$
T(x)=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)+C_{1} \bullet x+C_{2}
$$

FIND C1 and C2

$T(x)=\int_{x} \int_{x}\left[-\frac{S_{0} \frac{W}{m^{3}} \sin \left(\frac{\pi x}{L}\right)}{\mathrm{k}_{x}} d x\right] d x+C_{1} \bullet x+C_{2} ; 0 \leq x \leq L$
$T(x)=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)+C_{1} \bullet x+C_{2}$
$\frac{d T}{d x}=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{1} \cos \left(\frac{\pi x}{L}\right)+C_{1}$
$B C \# 1$:
$\frac{d T}{d x}=0=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{1} \cos \left(\frac{\pi \bullet 0}{L}\right)+C_{1}$
$C_{1}=-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \rightarrow \frac{W / m^{3}}{W / m-K} m \rightarrow \frac{K}{m}$; UNIT CHECK
$T(x)=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet x+C_{2}$
$T(x)=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet x+C_{2}$
BC\#2:
$-k_{x} \frac{d T}{d x}{ }_{x=L}=h\left(T(x=L)-T_{\infty}\right)$
$-k_{x}\left[\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \cos \left(\frac{\pi L}{L}\right)-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)\right]=h\left[-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet L+C_{2}-T_{\infty}\right]$
$C_{2}=\frac{-k_{x}\left[\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \cos \left(\frac{\pi L}{L}\right)-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)\right]}{h}+\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet L+T_{\infty}$
UNIT CHECK
$\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet L \rightarrow \frac{\frac{W}{m^{3}}}{\frac{W}{m-K}} m^{2} \rightarrow K$
$\frac{S_{0}}{h}\left(\frac{L}{\pi}\right) \rightarrow \frac{\frac{W}{m^{3}}}{\frac{W}{m^{2}-K}} m \rightarrow K$
$C_{2}=\frac{\left[-S_{0}\left(\frac{L}{\pi}\right)\left(1+\cos \left(\frac{\pi L}{L}\right)\right]\right.}{h}+\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \cdot L+T_{\infty}$
$C_{2}=\frac{2 S_{0} L}{\pi h}+\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \cdot L+T_{\infty}$

$$
\begin{aligned}
& T(x)=\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right)^{2} \sin \left(\frac{\pi x}{L}\right)-\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet x+C_{2} \\
& C_{2}=\frac{2 S_{0} L}{\pi h}+\frac{S_{0}}{\mathrm{k}_{x}}\left(\frac{L}{\pi}\right) \bullet L+T_{\infty}
\end{aligned}
$$

W/m3	m	$\mathrm{W} / \mathrm{m}-\mathrm{K}$	$\mathrm{W} / \mathrm{m} 2-\mathrm{K}$	K	K / m	K
S0	L	Kx	h	Tf	C1	C2
20000	10	2000	2000	500	-31.83102	881.9721861

1D HDE Solution
Wall Sinusoidal Heat Generation

Find Surface Temperature Two (2) Methods

KNOW YOUR HEAT DIFFUSION EQUATION (HDE) (SPECIAL CASE)

- One-Dimensional Conduction in a Planar Medium with Constant Properties and NO GENERATION

$$
\frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)=\rho c_{p} \frac{\partial T}{\partial t}
$$

becomes

$$
\frac{\partial^{2} T}{\partial x^{2}}=\frac{1}{\alpha} \frac{\partial T}{\partial t}
$$

$$
\alpha \equiv \frac{k_{x}}{\rho c_{p}} \rightarrow \text { thermal diffusivity of the medium }\left[\mathrm{m}^{2} / \mathrm{s}\right]
$$

Boundary and Initial Conditions

- For transient conduction, Heat Diffusion Equation (HDE) is first order in time, requiring specification of an initial temperature distribution:
- Since HEAT DIFFUSION EQUATION (HDE) is second order in space, two boundary conditions, must be specified. Some common cases:

> 2nd Order in Space Requires Two (2) Boundary Conditions
> 1st Order in Time requires One (1) Initial Condition

Constant Surface Temperature

Constant Heat Flux:

Applied Flux

4/11/2022

Convection:

$$
\begin{aligned}
& \text { Boundary Condition } \\
& \left(-k \frac{d T}{d x}\right)_{x=X^{*}}=h\left(T_{s}-T_{\infty}\right) \rightarrow \text { CONVECTION }
\end{aligned}
$$

HDE + BC Solutions--CYLINDRICAL $q_{r}=A_{r} q_{r}^{\prime \prime}=2 \pi r L q_{r}^{\prime \prime}$ Watts

1D Cylindrical HDE

$A_{r} \equiv$ Radial Area Normal to Heat Transfer: $2 \pi \mathrm{rL}$

CONTROL VOLUME

1D cylindrical HDE

Apply $1^{\text {st }}$ Law

$$
\begin{aligned}
& +_{\text {in }}-+_{E_{\text {out }}} \pm \dot{\dot{E}}_{\text {gen }}=\frac{d E_{\text {st }}}{d t} \equiv \rho \forall c_{p} \frac{d T}{d t} \\
& +\dot{E}_{\text {in }}=q_{r}^{\prime \prime} A_{r}^{\prime \prime} \\
& + \\
& \dot{E}_{\text {out }}=q_{r}^{\prime \prime} A_{r}+\frac{d}{d r}\left[q_{r}^{\prime \prime} A_{r}\right] d r \\
& \dot{E}_{\text {in }}-\stackrel{+}{E}_{\text {out }}=-\frac{d}{d r}\left[q_{r}^{\prime \prime}\right. \\
& A_{r}=2 \pi r \bullet L(\text { normal to }
\end{aligned}
$$

1D Cylindrical HDE

$\stackrel{+}{\dot{E}}_{\text {in }}-\stackrel{+}{E}_{\text {out }} \pm \stackrel{+}{\dot{E}}_{\text {gen }}=\frac{d E_{\text {St }}}{d t} \equiv \rho \forall c_{p} \frac{d T}{d t}$
$-\frac{d}{d r}\left(q_{r}^{\prime \prime} 2 \pi r L\right) d r+\dot{S}_{g e n}(r) \bullet 2 \pi r L \bullet d r=\rho 2 \pi r L \bullet d r \bullet c_{p} \frac{d T}{d t}$
$-\frac{d}{d r}\left(q_{r}^{\prime \prime} r\right) 2 \pi L d r+\dot{S}_{g e n}(r) \bullet 2 \pi L d r \bullet r=\rho 2 \pi L d r \bullet r \bullet c_{p} \frac{d T}{d t}$
$-\frac{1}{r} \frac{d}{d r}\left(q_{r}{ }^{\prime} r\right)+\dot{S}_{g e n}(r)=\rho \bullet c_{p} \frac{d T}{d t}$
Fourier's Law
$\mathrm{q}_{r}^{\prime \prime}=-k_{r} \frac{d T}{d r}$
$H D E \rightarrow$
$\frac{1}{r} \frac{d}{d r}\left(k_{r} r \frac{d T}{d r}\right)+\dot{S}_{g e n}(r)=\rho \bullet c_{p} \frac{d T}{d t}$

1D Cylindrical HDE

$\frac{1}{r} \frac{d}{d r}\left(k_{r} r \frac{d T}{d r}\right)+\dot{S}_{g e n}(r, t)=\rho \bullet c_{p} \frac{d T}{d t}$
REDUCTIONS
Homogeneous $\rightarrow \mathrm{k}_{r} \neq F(r)$
$\frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)+\frac{\dot{S}_{g e n}(r, t)}{k_{r}}=\frac{\rho \bullet c_{p}}{k_{r}} \frac{d T}{d t}=\frac{1}{\alpha} \frac{d T}{d t}$
STEADY STATE $\rightarrow \frac{d T}{d t}=0$
$\frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)+\frac{\dot{S}_{g e n}(r)}{k_{r}}=0$

Heat Flux Components (cont.)

- In angular coordinates (ϕ or ϕ, θ), the temperature gradient is still based on temperature change over a length scale and hence has units of ${ }^{\circ} \mathrm{C} / \mathrm{m}$ and not ${ }^{\circ} \mathrm{C} /$ deg.
- Heat rate for one-dimensional, radial conduction in a cylinder or sphere:

$$
\begin{aligned}
& \text { - Cylinder } \\
& q_{r}= A_{r} q_{r}^{\prime \prime}=\left(2 \pi r L\left[m^{2}\right]\right) q_{r}^{\prime \prime}\left[\frac{W}{m^{2}}\right] \rightarrow \text { Watts } \\
& \text { or, }
\end{aligned} \quad \begin{aligned}
q_{r}^{\prime}= & A_{r}^{\prime} q_{r}^{\prime \prime}=(2 \pi r[m]) q_{r}^{\prime \prime}\left[\frac{W}{m^{2}}\right] \rightarrow \frac{\text { Watts }}{\text { Length }} \\
& - \text { Sphere } \\
q_{r}= & A_{r} q_{r}^{\prime \prime}=\left(4 \pi r^{2}\left[m^{2}\right]\right) q_{r}^{\prime \prime}\left[\frac{W}{m^{2}}\right] \rightarrow \text { Watts }
\end{aligned}
$$

HDESUMMARY

$2^{\text {nd }}$ Order PDE Used to find temperature "INSIDE" everywhere, $\mathrm{T}(\mathrm{x}, \mathrm{y}, \mathrm{z}, \mathrm{t})$
Use Fourier's Law to now find $q(x, y, z$, time $)$.

$$
\begin{aligned}
& 1 D \text { Cartesian } \\
& \frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)+\dot{S}_{\text {gen }}(x, t)=\rho c_{p} \frac{\partial T}{\partial t} \\
& 2 D \text { Cartesian } \\
& \frac{\partial}{\partial x}\left(k_{x} \frac{\partial T}{\partial x}\right)+\frac{\partial}{\partial y}\left(k_{y} \frac{\partial T}{\partial y}\right)+\dot{S}_{\text {gen }}(x, y, t)=\rho c_{p} \frac{\partial T}{\partial t}
\end{aligned}
$$

1D Cylindrical

$\frac{1}{r} \frac{d}{d r}\left(k_{r} r \frac{d T}{d r}\right)+\dot{S}_{g e n}(r, t)=\rho c_{p} \frac{d T}{d t}$
2D Cylindrical
$\frac{1}{r} \frac{d}{d r}\left(k_{r} r \frac{d T}{d r}\right)+\frac{d}{d z}\left(k_{z} \frac{d T}{d r}\right)+\dot{S}_{g e n}(r, z, t)=\rho c_{p} \frac{d T}{d t}$

$$
\alpha \equiv \frac{k}{\rho c_{p}} \rightarrow \text { thermal diffusivity of the medium }\left[\mathrm{m}^{2} / \mathrm{s}\right]
$$

1D Exact Solutions w/BC's (QUIZ)

- SOLVE
- Temp-Temp

2nd Order in Space Requires Two (2) Boundary Conditions
1 st Order in Time requires One (1) Initial Condition

- Temp-Insulation
- Temp-Convection
- Temp-Heat Flux

Learning Expectations

1. Solve 1D HDE for Cartesian, Cylindrical and Spherical to obtain EXACT solution for $\mathrm{T}(\mathrm{x}), \mathrm{T}(\mathrm{r})$; and variable Sgen(x), Sgen (r).
2. Be able to obtain solution for any of the three specified cases for Boundary Conditions

DON'T PRAGTICE UVITL YOU GET IT RICHT PRACTICE UWTLL YOU GANT OET IT WRONO.

- Consider possible microscale or nanoscale effects in problems involving very small physical dimensions or very rapid changes in heat or cooling rates.
- Solve appropriate form of heat equation to obtain the temperature distribution.
- Knowing the temperature distribution, apply Fourier's Law to obtain the heat flux at any time, location and direction of interest.
- Applications:

$$
\begin{array}{ll}
\text { Chapter 3: } & \text { One-Dimensional, Steady-State Conduction } \\
\text { Chapter 4: } & \text { Two-Dimensional, Steady-State Conduction } \\
\text { Chapter 5: } & \text { Transient Conduction }
\end{array}
$$

Heat Flux Components

- Cartesian Coordinates:

$$
\begin{equation*}
\overrightarrow{q^{\prime \prime}}=\left(-k_{x} \frac{\partial T}{\partial x} \vec{i}\right)-\left(k_{y} \frac{\partial T}{\partial y} \vec{j}\right)-\left(k_{z} \frac{\partial T}{\partial z} \vec{k}\right) \tag{2.3}
\end{equation*}
$$

- Cylindrical Coordinates:

$$
\begin{equation*}
\overrightarrow{q^{\prime \prime}}=-k_{r} \underbrace{\frac{\partial T}{\partial r} \vec{i}}-(\underbrace{k_{\phi} \frac{\partial T}{r \partial \phi} \vec{j}})-\left(k_{z} \frac{\partial T}{\partial z} \vec{k}\right) \tag{2.24}
\end{equation*}
$$

- Spherical Coordinates:

$$
\begin{equation*}
\overrightarrow{q^{\prime \prime}}=-k_{r} \underbrace{\frac{\partial T}{\partial r} \vec{i}-(k_{\theta} \underbrace{\frac{\partial T}{r \partial \theta} \vec{j}})-\left(k_{\phi} \frac{\partial T}{r \sin \theta \partial \phi} \vec{k}\right) .} \tag{2.27}
\end{equation*}
$$

- Cylindrical Coordinates:

$$
\begin{equation*}
\frac{1}{r} \frac{\partial}{\partial r}\left(k_{r} r \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2}} \frac{\partial}{\partial \phi}\left(k_{\phi} \frac{\partial T}{\partial \phi}\right)+\frac{\partial}{\partial z}\left(k_{z} \frac{\partial T}{\partial z}\right)+\dot{S}_{g e n}(x, y, z, t)=\rho c_{p} \frac{\partial T}{\partial t} \tag{2.26}
\end{equation*}
$$

- Spherical Coordinates:

$\frac{1}{r^{2}} \frac{\partial}{\partial r}\left(k_{r} r^{2} \frac{\partial T}{\partial r}\right)+\frac{1}{r^{2} \sin ^{2} \theta} \frac{\partial}{\partial \phi}\left(k_{\phi} \frac{\partial T}{\partial \phi}\right)+\frac{1}{r^{2} \sin \theta} \frac{\partial}{\partial \theta}\left(k_{\theta} \sin \theta \frac{\partial T}{\partial \theta}\right)+\dot{S}_{g e n}(x, y, z, t)=\rho c_{p} \frac{\partial T}{\partial t}(2.29)$

Derive GENERAL SOLUTION for 1D

 CYLINDER$\frac{1}{r} \frac{d}{d r}\left(k_{r} r \frac{d T}{d r}\right)+\dot{S}_{g e n}(r, t)=\rho c_{p} \frac{d T}{d t}$

Steady State/Homegeneous
$\frac{1}{r} \frac{d}{d r}\left(r \frac{d T}{d r}\right)=\frac{-\dot{S}_{g e n}(r)}{k_{r}} ; \quad 0 \leq r \leq r_{0}$
Multiple by r
$\frac{d}{d r}\left(r \frac{d T}{d r}\right)=\frac{-\dot{S}_{g e n}(r) \bullet r}{k_{r}}$
Integrate Once
$r \frac{d T}{d r}=\int\left(\frac{-\dot{S}_{\text {gen }}(r) \bullet r}{k_{r}}\right) d r+C_{1}$
\div by r

$$
\frac{d T}{d r}=\left(\frac{1}{r} \int\left(\frac{-\dot{S}_{\operatorname{gen}}(r) \bullet r}{k_{r}}\right) d r\right)+\frac{C_{1}}{r}
$$

INTEGRATE AGAIN

$$
\mathrm{T}(\mathrm{r})=\int\left(\frac{1}{r} \int\left(\frac{-\dot{S}_{\operatorname{gen}}(r) \bullet r}{k_{r}}\right) d r\right) d r+C_{1} \ln (r)+C_{2}
$$

Case 1: Sgen $=0$, Solid Cylinder

$\mathrm{T}(\mathrm{r})=\mathrm{C}_{1} \ln (r)+C_{2}$
EXACT SOLUTION:

$$
\begin{aligned}
& \text { HEAT FLUX } \\
& \mathrm{q}_{r}{ }_{r} \frac{W}{m^{2}}=-k_{r} \frac{d T}{d r}=-k_{r} \frac{C_{1}}{r}=0
\end{aligned}
$$

B.C's:
\#1 @ $\mathrm{r}=0 \rightarrow$ but $\ln (0) \rightarrow-\infty$
\#2 @r= r_{0}
\#1:T(r=0) \rightarrow Must Exist \& Be Finite $\rightarrow \mathrm{C}_{1}=0$
$\mathrm{T}(\mathrm{r})=C_{2}$

NOTE: $\mathrm{T}(\mathrm{r})$ is not a function of $\mathrm{k}_{r} \rightarrow$ HOW POSSIBLE ?
NOTE: T(r) is a constant for solid cylinder and SS , and $\mathrm{Sgen}=0$.
FINAL: $\mathrm{T}(\mathrm{r})=\mathrm{T}_{0}$

Case 2: Sgen=0, Cylindrical SHELL

$$
\mathrm{T}(\mathrm{r})=\mathrm{C}_{1} \ln (r)+C_{2} ; \quad r_{1} \leq r \leq r_{2}
$$

EXACT SOLUTION:

$$
\begin{aligned}
& B C \# 1: T\left(r=r_{1}\right)=T_{1}, B C \# 2: T\left(T=r_{2}\right)=T_{2} \\
& \# 1: T_{1}=\mathrm{C}_{1} \ln \left(r_{1}\right)+C_{2}, C_{2}=T_{1}-\mathrm{C}_{1} \ln \left(r_{1}\right) \\
& \# 2: T_{2}=\mathrm{C}_{1} \ln \left(r_{2}\right)+C_{2} \\
& T_{2}=\mathrm{C}_{1} \ln \left(r_{2}\right)+T_{1}-\mathrm{C}_{1} \ln \left(r_{1}\right) \\
& C_{1}=\frac{T_{2}-T_{1}}{\ln \left(r_{2}\right)-\ln \left(r_{1}\right)}=\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)} \rightarrow\left[\frac{K}{\ln \left(r_{r}\right]}\right] \\
& C_{2}=T_{1}-C_{1} \ln \left(r_{1}\right) \\
& C_{2}=T_{1}-\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)} \ln \left(r_{1}\right) \rightarrow[K]
\end{aligned}
$$

Final, Sgen $=0$, Steady, $k=$ Const

 $T(r)=C_{1} \ln (r)+C_{2}$$\mathrm{T}(\mathrm{r})=\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)} \ln (r)+T_{1}-\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)} \ln \left(r_{1}\right)$
$\mathrm{T}(\mathrm{r})=T_{1}+\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)}\left(\ln \frac{r}{r_{1}}\right) ; \quad r_{1} \leq r \leq r_{2}$

HEAT FLUX

$$
\begin{aligned}
& \mathrm{q}^{\prime \prime} \frac{W}{m^{2}}=-k_{r} \frac{d T}{d r}=-k_{r} \frac{C_{1}}{r}=-k_{r} \frac{\frac{T_{2}-T_{1}}{\ln \left(r_{2} / r_{1}\right)}}{r} \\
& q(r)[W]=\mathrm{q}^{\prime \prime} \frac{W}{m^{2}} A_{r}=\mathrm{q}^{\prime \prime} \frac{W}{m^{2}} \bullet 2 \pi r L
\end{aligned}
$$

HDE SPHERE - SS Exact Solution

- SOLID SPHERE

HOMEGENOUS - -SOLID SPHERE
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)+\frac{\dot{S}_{g e n}(r, t)}{k_{r}}=\frac{\rho c_{p}}{l_{r}} \frac{d T}{d t}=0 \rightarrow$ INTEGRATE TWICE
$T(r)=-\frac{C_{1}}{r}+C_{2} ; 0 \leq r \leq r_{0} \rightarrow$ MOST GENERAL SOLUTION
BOUNDARY CONDITIONS - SPECIAL CASE A

1. $\mathrm{T}(\mathrm{r}=0) \rightarrow$ FINITE $\rightarrow \mathrm{C}_{1}=0$
2. $\mathrm{T}\left(\mathrm{r}=\mathrm{r}_{0}\right)=T_{s}($ known $) \rightarrow \mathrm{C}_{2}=T_{s}$

EXACT
$T(r)=T_{s}$
$q_{r}^{\prime \prime}=-k_{r} \frac{d T}{d r}=0$

OTHER BOUNDARY CONDITIONS WILL RESULT IN OTHER EXACT SOLUTIONS.

HDE SPHERE - SS Exact Solution

- SPHERICAL SHELL HOMEGENOUS --SOLID SPHERE
$\frac{1}{r^{2}} \frac{d}{d r}\left(r^{2} \frac{d T}{d r}\right)+\frac{\dot{S}_{\text {gen }}(r, t)}{k_{r}}=\frac{\rho c_{p}}{k_{r}} \frac{d T}{d t}=0$ $T(r)=-\frac{C_{1}}{r}+C_{2} ; r_{1} \leq r \leq r_{2} \rightarrow$
MOST GENERAL SOLUTION
BOUNDARY CONDITIONS - SPECIAL CASE A

1. $\mathrm{T}\left(\mathrm{r}=\mathrm{r}_{1}\right)=T_{1}$
2. $\mathrm{T}\left(\mathrm{r}=\mathrm{r}_{2}\right)=T_{2}$

EXACT
1.T $\left(\mathrm{r}=\mathrm{r}_{1}\right)=T_{1}=-\frac{C_{1}}{r_{1}}+C_{2} \rightarrow C_{2}=T_{1}+\frac{C_{1}}{r_{1}} \rightarrow[K]$
2.T $\left.\mathrm{r}=\mathrm{r}_{2}\right)=T_{2}=-\frac{C_{1}}{r_{2}}+T_{1}+\frac{C_{1}}{r_{1}}=T_{1}+C_{1}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)$
$T_{2}=T_{1}+C_{1}\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right) \rightarrow C_{1}=\frac{T_{2}-T_{1}}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)} \rightarrow[K \bullet m]$
OTHER BOUNDARY CONDITIONS WILL RESULT IN OTHER EXACT SOLUTIONS.

HEAT FLUX - EVERYWHERE

Spherical Shell

$$
T(r)=T_{1}+\frac{T_{2}-T_{1}}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}\left(\frac{1}{r_{1}}-\frac{1}{r}\right) ; r_{1} \leq r \leq r_{2}
$$

$$
q_{r}^{\prime \prime}(r)=-k \frac{d T}{d r}=-k\left[\frac{C_{1}}{r^{2}}\right] ; C_{1}=\frac{T_{2}-T_{1}}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}
$$

$$
q_{r}^{\prime \prime}(r)=-k \frac{d T}{d r}=-\frac{k}{r^{2}} \frac{T_{2}-T_{1}}{\left(\frac{1}{r_{1}}-\frac{1}{r_{2}}\right)}
$$

$$
\rightarrow\left[\frac{\frac{W}{m-K}}{m^{2}}\right][K-m] \rightarrow \frac{W}{m^{2}}
$$

$$
q_{r}^{\prime \prime}(r) \sim r^{2}
$$

OTHER BOUNDARY CONDITIONS WILL RESULT IN OTHER EXACT SOLUTIONS.

Thermal Response to Plane Wall

Known: Plane Wall, initially at uniform temperature, is suddenly exposed to convective heating.
Find: Differential equation, boundary and initial condition to find $T(x, t)$?

$$
\begin{aligned}
& H D E \\
& \frac{\partial^{2} T}{\partial x^{2}}=\frac{\rho c_{p}}{k} \frac{\partial T}{\partial t}=\frac{1}{\alpha} \frac{\partial T}{\partial t} \\
& \text { Initial Condition } \\
& T(x, t=O)=T_{i} \\
& \text { Boundary Conditions } \\
& \text { 1. } \frac{d T}{d x}{ }_{x=0}=0, \quad 2 .-k \frac{d T}{d x}{ }_{x=L}=h\left(T_{\infty}-T(x=L)\right)
\end{aligned}
$$

Thermal Response to Plane Wall

Sketch "INITIAL", "STEADY STATE" and 2 intermediate temperature profiles.

Note that the gradient at $x=0$ is always " 0 " due to wall insulation. Note that the gradient at $x=L$, decreases with as we approach SS.

TOTAL ENERGY TO WALL (W)

$$
\begin{aligned}
& E_{\text {in }}=\int_{0}^{\infty} q_{s}^{\prime \prime}(x=L, t) \frac{W}{m^{2}} A_{s} d t \\
& E_{\text {in }}=h A_{s} \int_{0}^{\infty}\left(T_{\infty}-T(L, t)\right) d t \rightarrow[J]
\end{aligned}
$$

TOTAL ENERGY TO WALL (W/V)

$$
\frac{E_{i n}}{V}=\frac{h A_{s}}{V=A_{s} L} \int_{0}^{\infty}\left(T_{\infty}-T(L, t)\right) d t \rightarrow\left[\frac{J}{m^{3}}\right]
$$

Heat Flux vs Time

(Wall and Surface)

NOTE: For all times, heat flux at wall ($\mathrm{x}=\mathrm{o}$) does not change, since wall boundary condition at $\mathrm{x}=\mathrm{o}$ does not change.

NOTE: As times becomes large at steady state, the surface heat flux ($\mathrm{x}=\mathrm{L}$), becomes ZERO, as heat is transferred from the convective fluid to the entire WALL temperature everywhere will eventually approach that of the fluid with NO INTERNAL HEAT GENERATION.

Problem 2.37 Surface heat fluxes, heat generation and total rate of radiation absorption in an irradiated semi-transparent material with a prescribed temperature distribution.

KNOWN: Temperature distribution in a semi-transparent medium subjected to radiative flux.
FIND: (a) Expressions for the heat flux at the front and rear surfaces, (b) The heat generation rate $\dot{q}(x)$, and (c) Expression for absorbed radiation per unit surface area.

SCHEMATIC:

ASSUMPTIONS: (1) Steady-state conditions, (2) One-dimensional conduction in medium, (3) Constant properties, (4) All laser irradiation is absorbed and can be characterized by an internal volumetric heat generation term $\dot{q}(x)$.

ANALYSIS: (a) Knowing the temperature distribution, the surface heat fluxes are found using Fourier's law,

$$
q_{x}^{\prime \prime}=-k\left[\frac{d T}{d x}\right]=-k\left[-\frac{A}{k a^{2}}(-a) e^{-a x}+B\right] \quad T(x)=-\frac{A}{k a^{2}} e^{-a x}+B x+C
$$

$$
\text { Front Surface, } x=0: \quad q_{x}^{\prime \prime}(0)=-k\left[+\frac{A}{k a} \cdot 1+B\right]=-\left[\frac{A}{a}+k B\right] \quad<
$$

$$
\text { Rear Surface, } x=L: \quad \quad q_{x}^{\prime \prime}(L)=-k\left[+\frac{A}{k a} e^{-a L}+B\right]=-\left[\frac{A}{a} e^{-a L}+k B\right]<
$$

(b) The heat diffusion equation for the medium is

$$
\begin{gathered}
\frac{d}{d x}\left(\frac{d T}{d x}\right)+\frac{\dot{q}}{k}=0 \quad \text { or } \quad \dot{q}=-k \frac{d}{d x}\left(\frac{d T}{d x}\right) \\
\dot{q}(x)=-k \frac{d}{d x}\left[+\frac{A}{k a} e^{-a x}+B\right]=A e^{-a x} .
\end{gathered}
$$

(c) Performing an energy balance on the medium,

$$
\dot{E}_{\text {in }}-\dot{E}_{\mathrm{out}}+\dot{E}_{g}=0
$$

On a unit area basis

$$
\dot{E}_{g}^{\prime \prime}=-\dot{E}_{\mathrm{in}}^{\prime \prime}+\dot{E}_{\mathrm{out}}^{\prime \prime}=-q_{x}^{\prime \prime}(0)+q_{x}^{\prime \prime}(L)=+\frac{A}{a}\left(1-e^{-a L}\right) .
$$

Alternatively, evaluate $\dot{E}_{g}^{\prime \prime}$ by integration over the volume of the medium,

$$
\dot{E}_{g}^{\prime \prime}=\int_{0}^{L} \dot{q}(x) d x=\int_{0}^{L} A e^{-a x} d x=-\frac{A}{a}\left[e^{-a x}\right]_{0}^{L}=\frac{A}{a}\left(1-e^{-a L}\right) .
$$

NOTE: ON A UNIT AREA BASIS (WIDTH x DEPTH)
 -> NORMAL TO HEAT FLOW

FOR A PLAIN WALL

$\dot{E}_{g e n}[W]=A_{n} \int_{0}^{L} \dot{S}_{g e n}(x)\left[\frac{W}{m^{3}}\right] d x, A_{n} \rightarrow$ AREA NORMAL TO HEAT FLOW
$\dot{E}_{g e n}^{\prime \prime}\left[\frac{W}{m^{2}}\right]=\frac{\dot{E}_{g e n}[W]}{A_{n}}=\int_{0}^{L} \dot{S}_{g e n}(x)\left[\frac{W}{m^{3}}\right] d x$

SYSTEMS STUDY

On the military outpost Natilas Prime, a new tera forming device has a bio radiation signature of the form:
$\dot{S}_{\text {gen }}(x)=S_{0}\left(1-e^{-\beta x}\right)\left[\frac{W}{m^{3}}\right], S_{0}, \beta \rightarrow$ Constants
To contain the radiation, the homegeneous unit $\left(\mathrm{k}_{B}=50 \mathrm{~W} / \mathrm{m}-\mathrm{K}\right)$ is placed within a rectangular containment vessel with an adiabatic wall $(x=0)$, and at the other side $(x=L)$ there is a lead radiatio insulation barrier of thickness " t " that experiences a convective heat transfer fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct of $\mathrm{h}=450 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ during the darkest nights at a temperature of $\mathrm{T}_{\infty}=2 \mathrm{C}$. As chief thermal systems engineer you are requested to study "lead" thickness and impact on SS interface temperature and external surface temperature, as function of S_{0} and β.

TRUST THE PATH

SYSTEMS STUDY

On the military outpost Natilas Prime, a new tera forming device has a bio radiation signature of the form:
$\dot{S}_{\text {gen }}(x)=S_{0}\left(1-e^{-\beta x}\right)\left[\frac{W}{m^{3}}\right], S_{0}, \beta \rightarrow$ Constants
To contain the radiation, the homegeneous unit $\left(\mathrm{k}_{B}=50 \mathrm{~W} / \mathrm{m}-\mathrm{K}\right)$ is placed within a rectangular containment vessel with an adiabatic wall $(x=0)$, and at the other side $(x=L)$ there is a lead radiatio insulation barrier of thickness " t " that experiences a convective heat transfer fluid due to the strong gale force winds 800 of MPH with a convective heat transfer coefficienct of $\mathrm{h}=450 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$ during the darkest nights at a temperature of $\mathrm{T}_{\infty}=2 \mathrm{C}$. As chief thermal systems engineer you are requested to study "lead" thickness and impact on SS interface temperature and external surface temperature, as function of S_{0} and β.

Temperature Formulation

$$
\begin{aligned}
& \text { BIO UNIT } \\
& \text { HDE } \\
& \frac{d^{2} T_{B}}{d x^{2}}=-\frac{\dot{S}_{g e n}(x)}{k_{B}}=-\frac{S_{0}\left(1-e^{-\beta x}\right)\left[\frac{W}{m^{3}}\right]}{k_{B}} \\
& 0 \leq x \geq L \\
& \text { Boundary Conditions } \\
& \text { 1. } \frac{d T_{B}}{d x}=0(\text { insulation }
\end{aligned}
$$

NOTE: Sgen(x) is only being generated within BIO UNIT.
NOTE: Two (2) different COORDINATE SYSTEMS

BIO UNIT SOLUTION

MOST GENERAL SOLUTION

$0 \leq x \leq L$
$\frac{d^{2} T_{B}}{d x^{2}}=-\frac{\dot{S}_{g e n}(x)}{k_{B}}=-\frac{S_{0}\left(1-e^{-\beta x}\right)\left[\frac{W}{m^{3}}\right]}{k_{B}}$
Integrate
$\frac{d T_{B}}{d x}=\frac{-S_{0}}{k_{B}}\left(x-\frac{e^{-\beta x}}{-\beta}\right)+C_{1}$
BOUNDARY CONDITION - \#1
$\frac{d T_{B}}{d x}{ }_{x=0}=0=\frac{-S_{0}}{k_{B}}\left(0-\frac{1}{-\beta}\right)+C_{1}$
$C_{1}=\frac{S_{0}}{k_{B} \beta} \rightarrow \frac{\frac{W}{m^{3}}}{\frac{W}{m-K} \frac{1}{m}} \rightarrow \frac{K}{m}$
Integrate
$T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+C_{1} x+C_{2}$
$T_{B}(x)=\frac{-S_{0}}{4 / 1 / 2022 k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2}$

INSULATION SOLUTION

2. $T_{I}(x=0)=T_{B}(x=L) \rightarrow$ TEMPS MUST BE SAME
3. $-\mathrm{k}_{I} \frac{d T_{I}}{d x_{x=0}}=-k_{B} \frac{d T_{B}}{d x} \rightarrow$ HEAT FLUX MUST BE SAME
4. $-k_{I} \frac{d T_{I}}{d x}=h\left(T_{I}(x=\Delta t)-T_{\infty}\right) \rightarrow$ CONDUCTION $=$ CONVECTION

MOST GENERAL SOLUTION
$T_{I}(x)=D_{1} x+D_{2}$

BOUNDARY CONDITIONS

3 UNKNOWNS
$\mathrm{C}_{2}, D_{1}, D_{2}$
3 BOUNDARY CONDITIONS
EQUATE TWO SOLUTIONS AT INTERFACE BIO UNIT \rightarrow
$T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2} \rightarrow 0 \leq x \leq L$
LEAD INSULATION \rightarrow
$T_{I}(x)=D_{1} x+D_{2} \rightarrow 0 \leq x \leq \Delta t$

EQUATE - BC\#2
$T_{I}(x=0)=T_{B}(x=L) \rightarrow$ TEMPS MUST BE SAME
$D_{2}=\frac{-S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} L+C_{2}$

BC\#3
$-\mathrm{k}_{I} \frac{d T_{I}}{d x}=-k_{B} \frac{d T_{B}}{d x_{x=L}} \rightarrow$ HEAT FLUX MUST BE SAME
$\left(-k_{I}\right) D_{1}=-k_{b}\left(\frac{-S_{0}}{k_{B}}\left(L-\frac{e^{-\beta L}}{-\beta}\right)+\frac{S_{0}}{k_{B} \beta}\right)$
$D_{1}=\frac{-\left(-S_{0}\left(L-\frac{e^{-\beta L}}{-\beta}\right)+\frac{S_{0}}{\beta}\right)}{\left(-k_{I}\right)}$
$C_{2}=D_{2}+\frac{S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)-\frac{S_{0}}{k_{B} \beta} L$

Boundary Condition \#4

At Outer Boundary:
$\mathrm{q}_{x}^{\prime \prime}($ conduction $)=q_{s}^{\prime \prime}($ convection $)$

$$
\begin{aligned}
& -k_{I} \frac{d T_{I}}{d x}=h(T(x=\Delta t)- \\
& -k_{I} D_{1}=h\left(D_{1} \Delta t+D_{2}-T_{\infty}\right) \\
& D_{2}=\frac{-k_{I} D_{1}}{h}-D_{1} \Delta t+T_{\infty} \\
& D_{2}=-D_{1}\left(\frac{k_{I}}{h}+\Delta t\right)+T_{\infty} \\
& \text { 4nveose }
\end{aligned}
$$

SUMMARY CONTANTS

BIO UNIT \rightarrow

$$
\begin{array}{ll}
C_{1}=\frac{S_{0}}{k_{B} \beta} & T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2} \rightarrow 0 \leq x \leq L \\
& \text { LEAD INSULATION } \rightarrow
\end{array}
$$

$$
\text { LEAD INSULATION } \rightarrow
$$

$$
D_{1}=\frac{-\left(-S_{0}\left(L-\frac{e^{-\beta L}}{-\beta}\right)+\frac{S_{0}}{\beta}\right)^{T_{I}(x)=D_{1} x+D_{2} \rightarrow 0 \leq x \leq \Delta t}}{\left(-k_{I}\right)}=\Omega
$$

$$
D_{2}=-\Omega\left(\frac{k_{I}}{h}+\Delta t\right)+T_{\infty}
$$

$$
C_{2}=D_{2}+\frac{S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)-\frac{S_{0}}{k_{B} \beta} L
$$

MATRIX FORMAT

(Maple/Matlab)

$$
\left[\begin{array}{cccc}
1 & 0 & 0 & 0 \\
0 & 1 & 0 & -1 \\
0 & 0 & 1 & 0 \\
0 & 0 & 0 & 1
\end{array}\right]\left\{\begin{array}{l}
C_{1} \\
C_{2} \\
D_{1} \\
D_{2}
\end{array}\right\}=\left\{\begin{array}{c}
\frac{S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)-\frac{S_{0}}{k_{B} \beta} L \\
\Omega \\
-\Omega\left(\frac{k_{I}}{h}+\Delta t\right)+T_{\infty}
\end{array}\right\}
$$

UNIT CHECK (INSULATION)

$$
\begin{aligned}
& T_{I}(x)=D_{1} x+D_{2} \rightarrow 0 \leq x \leq \Delta t \\
& D_{1}=\frac{-\left(-S_{0}\left[\frac{W}{m^{3}}\right]\left(\begin{array}{c}
-\beta\left[\frac{1}{m}\right] \\
\left.\left.L[m]-\frac{e^{-\beta L}}{}\right)+\frac{S_{0}\left[\frac{W}{m^{3}}\right]}{\beta\left[\frac{1}{m}\right]}\right) \\
\left(-k_{I}\left[\frac{W}{m-K}\right]\right)
\end{array}\right] \frac{K}{m}\right]}{\left.D_{2}=-D_{1}\left[\frac{K}{m}\right] \frac{k_{I}\left[\frac{W}{m-K}\right]}{h\left[\frac{W}{m^{2}-K}\right]}+\Delta t[m]\right)+T_{\infty}[K]=[K]}
\end{aligned}
$$

UNIT CHECK (BIO UNIT)

$$
\begin{aligned}
& T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2} \rightarrow 0 \leq x \leq L \\
& C_{1}=\frac{S_{0}\left[\frac{W}{m^{3}}\right]}{k_{B}\left[\frac{W}{m-K}\right] \beta\left[\frac{1}{m}\right]}=\left[\frac{K}{m}\right]
\end{aligned}
$$

$C_{2}=D_{2}[K]+\frac{S_{0}\left[\frac{W}{m^{3}}\right]}{k_{B}\left[\frac{W}{m-K}\right]}\left(\frac{L^{2}\left[m^{2}\right]}{2}-\frac{e^{-\beta L}}{\beta^{2}\left[\frac{1}{m^{2}}\right]}\right)-\frac{S_{0}\left[\frac{W}{m^{3}}\right]}{k_{B}\left[\frac{W}{m-K}\right] \beta\left[\frac{1}{m}\right]} L=[K]$

INTERFACE AND SURFACE TEMPERATURES

INTERFACE TEMPERATURE

BIO UNIT \rightarrow

$$
T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2} \rightarrow 0 \leq x \leq L
$$

let $\mathrm{x}=\mathrm{L}$
$\mathrm{T}_{B}(x=L)=\frac{-S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} L+C_{2}$
SURFACE TEMPERATURE
LEAD INSULATION \rightarrow

$$
T_{I}(x)=D_{1} x+D_{2} \rightarrow 0 \leq x \leq \Delta t
$$

let $\mathrm{x}=\Delta t$
$T_{I}(x=\Delta t)=D_{1} \Delta t+D_{2}$

BIO UNIT "WALL" TEMPERATURE

$$
T_{B}(x)=\frac{-S_{0}}{k_{B}}\left(\frac{x^{2}}{2}-\frac{e^{-\beta x}}{\beta^{2}}\right)+\frac{S_{0}}{k_{B} \beta} x+C_{2} \rightarrow 0 \leq x \leq L
$$

Let $\mathrm{x}=0$

$$
\begin{aligned}
& \mathrm{T}_{B}(x=0)=T_{\text {wall }}=\frac{-S_{0}}{k_{B}}\left(-\frac{1}{\beta}\right)+C_{2} \\
& D_{2}=-\Omega\left(\frac{k_{I}}{h}+\Delta t\right)+T_{\infty} \\
& C_{2}=D_{2}+\frac{S_{0}}{k_{B}}\left(\frac{L^{2}}{2}-\frac{e^{-\beta L}}{\beta^{2}}\right)-\frac{S_{0}}{k_{B} \beta} L
\end{aligned}
$$

INTERFACE and SURFACE TEMPERATURE

SURFACE TEMPERATURE, TS = ?

$$
\dot{S}_{g e n}(x)=S_{0}\left(1-e^{-\beta x}\right)\left[\frac{W}{m^{3}}\right], S_{0}, \beta \rightarrow \text { Constants }, 0 \leq \mathrm{x} \leq \mathrm{L}
$$

Overall Energy Balance at SS (BIO UNIT + INSULATION) $\dot{\mathrm{E}}_{\text {gen }}=\dot{\mathrm{E}}_{\text {out }}=h A_{s}\left(T_{s}-T_{\infty}\right)$
$T_{s}=\frac{\dot{\mathrm{E}}_{g e n}}{h A_{s}}+T_{\infty}=\frac{\dot{\mathrm{E}}_{g e n}}{h(H D)}+T_{\infty}$

$$
\dot{\mathrm{E}}_{g e n}=\int \dot{S}_{g e n}(x) d V, d V=H D d x
$$

$$
\dot{\mathrm{E}}_{g e n}=\operatorname{HDS}_{0} \int_{0}^{L}\left(1-e^{-\beta x}\right) d x=H D S_{0}\left(x-\frac{e^{-\beta x}}{-\beta}\right)_{0-L}
$$

$$
\dot{\mathrm{E}}_{g e n}=H D S_{0}\left(L-\frac{e^{-\beta L}}{-\beta}-\frac{1}{\beta}\right)=H D S_{0}\left(L-\frac{1}{\beta}\left(e^{-\beta L}+1\right)\right)
$$

$$
T_{s}=\frac{\dot{\mathrm{E}}_{g e n}}{h(H D)}+T_{\infty}=\frac{(H D) S_{0}\left(L-\frac{1}{\beta}\left(e^{-\beta L}+1\right)\right)}{h(H D)}+T_{\infty}
$$

(Lead Insulation Energy Balance)

$2^{\text {nd }}$ Method ONLY provides interface and surface temperatures.

Does NOT provide internal temperature distributions within the media.

Solve HDE for each HT Media with two Boundary Conditions each, 4 total.
Each HDE solution must have individual constant names (4 constants) to determine EXACT solution for temperature EVERWHERE within media.

Match Temperature and Heat Flux at interface between HT media using two (2) boundary conditions.

I can always find heat flux and heat rate by via FOURIER's LAW!!!
Use boundary conditions at interface and outer conditions to solve for 4 constants.

Check units on constants to ensure no slip-ups on algebra.
Seek to apply OVERALL control volume (if heat FLUX is known at every boundary) to determine an outer temperature. This can be used as "one" of your boundary conditions if desired.

