Hydrostatic Force on a Submerged Plane Surface

ZOOM LECTURE LINK

https://ketteringedu.zoom.us/my/drberry.heat?pw d=STINVWYwMktvRUdXSWJsSGFSK2 RPZz09

OFFICE HOURS
R 8:30PM - 9:30PM

Hydrostatic Force: Case I - Horizontal Surface

The magnitude of the resultant force is simply:

$$
F_{R}=p A
$$

$p=$ uniform pressure at the bottom
$A=$ area of the bottom.
(a) Pressure on tank bottom

Observation: Since the pressure is constant and uniformly distributed over the bottom, the resultant force acts through the Centroid of the area.

Hydrostatic Force: Case II - Ends of an open tank

The pressure on the ends of the tank is not uniformly distributed.

Determination of the resultant force for this situation is different.

(b) Pressure on tank ends

Observation: The resultant force of a static fluid on a plane surface is due to the Hydrostatic pressure distribution on the surface.

Hydrostatic Force on a Plane Surface

Class 05: Equilibrium Force System

*** Statics***

- Distributed Force Systems
- First Moment of Inertia
- Second Moment of Inertia
- Parallel axis theorem
- Moment about a point
- Moment about an axis
- Centroid - Center of Gravity

Class 05: Distributed Forces and Static Equilibrium

Distributed forces acting on a surface

How do we handle this situation?

Force: $\quad F_{R}=\int d F$
Moment: $F_{R} \cdot d_{R}=\int x d F$

$$
\begin{aligned}
& \leftrightarrow \sum F_{x}=0 ; \\
& \uparrow \sum F_{y}=0 ; \\
& \text { CC/CW } \sum M_{A}=0 ;
\end{aligned}
$$

Distributed Forces \& Static Equilibrium

Moment:

d: perpendicular distance from the line of action to the point A.

Moment about point A: $\quad M_{A}=F \cdot d$

$\overrightarrow{\boldsymbol{r}}:$ A to F vector.
Moment about point A: $\vec{M}_{A}=\vec{r} \times \vec{F}$

Class 05: Distributed Forces and Static Equilibrium

Example:

$$
\begin{aligned}
& F(x)=2 \frac{N}{m^{2}} \bullet x \\
& F_{R}=\int_{0}^{L} 2 \frac{N}{m^{2}} \bullet x d x={\frac{2 x^{2}}{2_{0-6}}=36 N}^{l}
\end{aligned}
$$

$$
F(x)=2 \frac{N}{m^{2}} \bullet x
$$

$$
\text { Find } d_{R}=?
$$

Solution: Take moment about point A:

$$
\left.\left.\begin{array}{l}
F_{R} \cdot d_{R}=\int x d F \\
\Rightarrow(36 N) d_{R}
\end{array}=\int_{-1 m}^{5 m} x\left(2 \frac{N}{m^{2}} x\right) d x\right] \text { (2 N } m^{2}\right) \int_{-1 m}^{5 m} x^{2} d x .
$$

$$
\Rightarrow d_{R}=2.3 m
$$

$>$ Location of the resultant force is right to point A - just less than the $1 / 2$ way from A to the edge.

Hydrostatic Force on a Plane SUBMERGED Surface

PASCAL's LAW

Observation: The pressure at a point in a fluid at rest or in motion, is independent of direction as long as there are no shearing stresses present.

LAW OF HYDROSTATICS
 $\frac{d P}{d z}=-\gamma_{\text {fluid }}$
 $\uparrow Z \quad \downarrow g$

$$
\begin{aligned}
& \text { LAW OF HYDROSTATICS } \\
& \frac{d P}{d z}=+\gamma_{\text {fuid }} \quad \downarrow Z \quad \downarrow^{2}
\end{aligned}
$$

Class 05: Hydrostatic Force on a Submerged Surface

- Determination of resultant force acting on submerged bodies
\checkmark First consider a planar arbitrary shape submerged in a liquid (see Fig.). The plane makes an angle θ with the liquid surface. The depth of water over the plane varies linearly.
\checkmark Now prescribe a coordinate frame such that the y-axis is aligned with the submerged plane. Consider an infinitesimally small area, $d A=d x . d y$ at a (x, y). Let this small area be located at a depth h from the free surface.

\checkmark We know

$$
\begin{equation*}
p=p_{a}+\gamma h \tag{1}
\end{equation*}
$$

Class 05: Hydrostatic Force on a Submerged Surface

The hydrostatic force on the plane is given by

$$
\begin{align*}
F_{R} & =\int p d A=\int\left(p_{a}+\gamma h\right) d A \\
& =p_{a} A+\gamma \int_{A} h d A=p_{a} A+\gamma \int_{A} y \sin \theta d A \\
& =p_{a} A+\gamma \sin \theta \int_{A} y d A \tag{2}
\end{align*}
$$

First moment?
The integral, $\int_{A}^{y d A}$ is the first moment of surface area about x-axis. If, y_{c} is the centroid of the area, we have

$$
\begin{equation*}
\int_{A} y d A=y_{c} \mathrm{~A} \tag{3}
\end{equation*}
$$

Class 05: Hydrostatic Force on a Submerged Surface

From (2) and (3), we obtain

$$
\begin{equation*}
F_{R}=p_{a} A+(\gamma \sin \theta)\left(y_{c} A\right)=p_{a} A+\gamma h_{c} A=\mathrm{P}_{c} A \tag{4}
\end{equation*}
$$

$h_{c}=y_{c} \sin \theta$ and $\mathrm{P}_{c}=P_{a}+\gamma h_{c}$ is pressure acting at centroid

Observation: The magnitude of the resultant fluid force is equal to the pressure acting at the centroid of the area multiplied by the total area

Note: Even though the force can be computed from the pressure at the center of the plane (centroid of the plane), this is NOT the point through which the Force acts!

(a)

(b)

Figure 2.22
© John Wiley \& Sons, Inc. All rights reserved.

$$
\begin{equation*}
F_{R}=p_{a} A+(\gamma \sin \theta)\left(y_{c} A\right)=p_{a} A+\gamma h_{c} A=\mathrm{P}_{c} A \tag{4}
\end{equation*}
$$

We know that the atmospheric pressure p_{a} acting at the free surface also acts everywhere within the fluid and also on both sides of the plane. As such it doesn't contribute to the net force on the plane. So we can drop this term from Eq. (4) for F_{R}.

Class 05: Location of Hydrostatic Force

Location of the resultant force - $\left(x_{R}, y_{R}\right)$

Force Balance: The moment of the resultant force must be equal to the moment of the pressure distributed
 force about the same axis, thus we have

$$
\begin{equation*}
\mathrm{x}_{\mathrm{R}} F_{R}=\int x p d A, \quad \mathrm{y}_{\mathrm{R}} F_{R}=\int \mathrm{y} p d A \tag{5}
\end{equation*}
$$

Class 05: Location of Hydrostatic Force

The term $\int y^{2} d A$ is well-known second moment of the area (${ }^{A}$ moment of inertia) about the \mathbf{x}-axis and denoted by $I_{x x}$
$\mathrm{y}_{\mathrm{R}}\left(F_{R}\right)=\int_{A} \mathrm{y}(p) d A$
$y_{R}\left(\gamma \sin \theta y_{c} A\right)=\int_{A} y(\gamma h) d A=\int_{A} y \gamma(y \sin \theta) d A=\gamma \sin \theta \int_{A} y^{2} d A$
$\Rightarrow y_{R}=\frac{\int_{A} y^{2} d A}{\mathrm{y}_{\mathrm{c}} A}=\frac{I x x}{\mathrm{y}_{\mathrm{c}} A}(6)$

Is the second moment of the area with respect to an axis passing through its centroid and parallel to the x axis.

Using parallel axis theorem:

$$
\begin{equation*}
I_{x x}=I_{x c}+A y_{c}^{2} \tag{7}
\end{equation*}
$$

$$
\begin{equation*}
y_{R}=\frac{\mathrm{I}_{\mathrm{xc}}}{\mathrm{y}_{\mathrm{c}} A}+y_{c} \tag{8}
\end{equation*}
$$

Observation: Resultant force doesn't pass through the centroid but is always below it, since

$\mathrm{I}_{\mathrm{xc}} / \mathrm{y}_{\mathrm{c}} A>0$.

$$
y_{R}=\frac{\mathrm{I}_{\mathrm{xc}}}{\mathrm{y}_{\mathrm{c}} A}+y_{c}
$$

(8)

Class 05: Location of Hydrostatic Force

The x-coordinate, x_{R}, for the resultant force can be determined in a similar manner by summing moments about the y -axis. Thus

$$
\begin{equation*}
\mathrm{x}_{\mathrm{R}} F_{R}=\int_{A} x p d A=\gamma \sin \theta \int_{A} x y d A \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
x_{R}=\frac{\int_{\mathrm{A}} x y d A}{\mathrm{y}_{\mathrm{c}} A}=\frac{\mathrm{I}_{\mathrm{xy}}}{\mathrm{y}_{\mathrm{c}} A} \tag{10}
\end{equation*}
$$

The term | $I_{x y}$ | is the product of inertia with respect to the x and |
| :--- | :--- | y axes.

Using parallel axis theorem we can write $\quad x_{R}=\frac{\mathrm{I}_{\mathrm{xyc}}}{\mathrm{y}_{\mathrm{c}} A}+x_{c}$
where $I_{x x c}$ is the product of inertia with respect to an orthogonal coordinate system passing through the centroid of the area and formed by a translation of the x-y coordinate system. Observation: The point through which the resultant force acts is called 20 the center of pressure

Hydrostatic Force on a Submerged Plane Surface "REVIEW"

Dealing with Hydrostatic Force

- Magnitude of Equivalent Force (Fr)

Pressure at the depth of the centroid $\left(\mathbf{y}_{\mathrm{c}}\right)$

- Locate the Equivalent Force

Equate resultant moment to distributed moment $\left(y_{R}\right)$

- Apply Equilibrium Conditions

Complete the rest of the problem to find REACTION
forces.
Pay Attention!
Although you found F_{R} by determining the pressure at the centroid, DO NOT LOCATE F_{R} at that point. F_{R} LOCATED AT y_{R} (i.e. at y_{CP}).

Class 05: Geometrical properties of some common shapes

(a) Rectangle

(c) Semicircle

$$
\begin{aligned}
& A=b a \\
& I_{x c}=\frac{1}{12} b a^{3} \\
& I_{y c}=\frac{1}{12} a b^{3} \\
& I_{x y c}=0
\end{aligned}
$$

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{2} \\
& I_{x c}=0.1098 R^{4} \\
& I_{y c}=0.3927 R^{4} \\
& I_{x y c}=0
\end{aligned}
$$

(e) Quarter circle

(b) Circle

(d) Triangle

$$
\begin{aligned}
& A=\frac{\pi R^{2}}{4} \\
& I_{x c}=I_{y c}=0.05488 R^{4} \\
& I_{x y c}=-0.01647 R^{4}
\end{aligned}
$$

NOTHIING BUT THE MATH

$x-x^{2}-3 x+1+0$
astronomy chords

 sis relationships \quad radius a length tables ratios engineering Greek navigation find positive add mathematics cosine
surveying
urvarure
many work cos branch geo

ENGINEERING

$$
\begin{aligned}
& F_{R}=\gamma_{f} h_{c} A \\
& y_{r}=y_{c}+\frac{I_{x x c}}{y_{c} A_{p}}
\end{aligned}
$$

A 200 lb gate of 10 ft wide and 5 ft . long is hinged at point A as shown. The gate is held in place by a brace that acts "NORMAL" to the gate.
cotangent : $\cot \theta=\frac{\cos \theta}{\sin \theta}=\frac{1}{\tan \theta}$

$$
\begin{aligned}
& \sec a n t: \sec \theta=\frac{1}{\cos \theta} \\
& \text { cosecant : } \csc \theta=\frac{1}{\sin \theta}
\end{aligned}
$$

DRAW a complete free Body Diagram of gate and show all forces, assumed COORDINATE SYSTEM, and indicate "yc", "yr", and "hc".

Determine:
a.The resultant pressure force AND location?
b.The force of the brace on the gate?
c. Derive the parametric equation/expression to find the hinge forces at point A and verify units.

FREE BODY DIAGRAM

Resultant Fluid Pressure Force

$$
F_{r}=\gamma h_{c} A_{p},
$$

"hc" measured from SURFACE VERTICALLY to location of PLATE CENTROID.
$\theta=\tan ^{-1} \frac{12}{5}=67.4^{0}, \phi=90-\theta=22.6^{0}$
$G \equiv$ Verticle Height $=(l \sin \theta)$
$h_{c}=\frac{G}{2}=\frac{5 \sin (67.4)}{2}=2.31 \mathrm{ft}$
$F_{r}=\left(62.4 \frac{l b f}{f t^{3}}\right)(2.31 f t)(10 f t \bullet 5 f t)=7207 l b f$

LOCATION

" $\mathrm{yr}^{\prime \prime}$ (" $\mathrm{yp}^{\prime \prime}$) measured from SURFACE along AXIS of plate to LINE of ACTION of resultant pressure FORCE.

$$
\begin{gathered}
\text { LOCATION } \\
y_{c}=\frac{l}{2}=2.5^{\prime} \\
y_{r}=y_{c}+\frac{I x c}{y_{c} A_{p}}=2.5^{\prime}+\frac{\frac{1}{12} b h^{3}}{2.5 \cdot 50 f t^{2}}=2.5^{\prime}+\frac{\frac{1}{12} 10 \cdot 5^{3}}{2.5 \cdot 50 f t^{2}}=3.3^{\prime}
\end{gathered}
$$

STATIC EQUILIBRIUM FBD

BRACE

$$
\begin{aligned}
& \sum_{A}^{C C N+} M=0 \\
& +F_{b} l-m g \cos \theta \frac{l}{2}-F_{r}\left(l-y_{r}\right)=0 \\
& F_{b}=\frac{m g \cos \theta \frac{l}{2}+F_{r}\left(l-y_{r}\right)}{l}
\end{aligned}
$$

HINGE

$\sum_{x} F=0$
$A_{x}+F_{r} \sin \theta-F_{b} \cos \phi=0$
$A_{x}=F_{b} \cos \phi-F_{r} \sin \theta$
$\uparrow \sum_{y} F=0$
$A_{y}-F_{r} \cos \theta+F_{b} \sin \phi-m g=0$
$A_{y}=F_{r} \cos \theta-F_{b} \sin \phi+m g$

$$
\begin{aligned}
& \vec{A}=A_{x} \hat{i}+A_{y} \hat{j} \\
& \|\vec{A}\|=\sqrt{A_{x}^{2}+A_{y}^{2}} \\
& \theta_{x}=\tan ^{-1} \frac{A_{y}}{A_{x}}
\end{aligned}
$$

FORCE RESOLUTION

$$
\begin{aligned}
& \theta=\tan ^{-1} \frac{12}{5}=67.4^{0}, \\
& \phi=90-\theta=22.6^{\circ}
\end{aligned}
$$

$$
F_{b} \sin \theta\left(F_{b} \cos \phi\right)
$$

Class 05: Hydrostatic Force on a Submerged Surface

Problem \# 1: A gate, shown in Figure below is 5 ft wide, is hinged at point B, and rests against a smooth wall at point A. Compute (a) the force on the gate due to seawater pressure, (b) the horizontal normal force P exerted by the wall at point A, and (c) the reactions at the hinge B.

$$
\sin \theta=\frac{6}{L} \rightarrow L=\frac{6}{\sin \theta}=10^{\prime}
$$

The gate area is $10 f t \times 5 f t=50 f t^{2}$
"hc" measured from SURFACE
VERTICALLY to location of PLATE CENTROID.

$$
F=P_{C} A=\gamma_{H_{2} 0} h_{C} A
$$

" yr " measured from SURFACE along AXIS of plate to LINE of ACTION of resultant pressure FORCE.
"hc" measured from SURFACE VERTICALLY to location of PLATE CENTROID.

Solution: (a) By geometry the gate is rectangular,
10 ft long (see Fig. below) from A to B and 5 ft wide.

$$
\theta=37^{\circ}=\tan ^{-1}(6 / 8)
$$

The centroid of the gate is halfway between or at elevation 3 ft above point B.

Thus the depth $h_{c}=15-3=12 \mathrm{ft}$

$$
\sin \theta=\frac{6}{L} \rightarrow L=\frac{6}{\sin \theta}=10^{\prime}
$$

Neglect P_{a} as acting on both sides of the gate.
The hydrostatic Force on the gate is
$F=P_{C} A=\gamma_{\mathrm{H}_{2} 0} h_{C} A=\left(64 l b f / f t^{3}\right)(12 f t)\left(50 f t^{2}\right)=38,400 l b f$

$$
\begin{aligned}
& \sin \theta=\frac{9}{L_{1}} \rightarrow L_{1}=\frac{9}{\sin \theta}=15^{\prime} \\
& y_{c}=15^{\prime}+\frac{l}{2}=15^{\prime}+\frac{10^{\prime}}{2}=20
\end{aligned}
$$

Class 05: Hydrostatic Force on a Submerged Surface

(b) We must find the center of pressure (CP) of F. A free-body diagram of the gate is shown below. The gate is a rectangle, hence

$$
I_{x y}=0 \text { and } I_{x c}=\frac{b L^{3}}{12}=\frac{(5 f t)(10 f t)^{3}}{12}=417 f t^{4}
$$

The distance l from the $\mathbf{C G}$ to the $\mathbf{C P}$ is:
$y_{R}=\frac{I_{x c}}{y_{c} A}+y_{c}$
$l=y_{r}-y_{c}$
Distance from point B to force F is :

$$
10^{\prime}+15^{\prime}-y_{r}=4.583^{\prime}
$$

" yr " measured from SURFACE along AXIS of plate to LINE of ACTION of resultant pressure FORCE.

SUMMING THE MOMENTS COUNTERCLOCKWISE ABOUT B GIVES:
$\sum_{C C W+} M_{B}=0=P \bullet 6 f t-F\left(4.583^{\prime}\right)=P(6 f t)-(38,400 l b f)(4.583 f t)$
$\Rightarrow P=29,300 l b f$

Class 05: Hydrostatic Force on a Submerged Surface

(c) With F and P known, the reactions B_{x} and B_{z} are found by summing the forces on the gate.

$$
\begin{aligned}
& \rightarrow \sum F_{x}=0=B_{x}+F \sin \theta-P \\
& \Rightarrow 0=B_{x}+(38,400 l b f)\left(\frac{6}{10}\right)-29,300 l b f \\
& \Rightarrow B_{x}=6300 l b f
\end{aligned}
$$

Similarly,

$$
\begin{aligned}
& \uparrow \sum F_{z}=0=B_{z}-F \cos \theta \\
& \Rightarrow 0=B_{z}-(38,400 l b f)\left(\frac{8}{10}\right) \\
& \Rightarrow B_{z}=30,700 l b f
\end{aligned}
$$

Class 05: Hydrostatic Force on a Submerged Surface

Problem \# 2: A reservoir filled with water has a 4 cm diameter circular plug at 3 cm above the bottom of right corner. The plug will pop out if the hydrostatic force acting on it exceeds 30 N . For this condition:
a. What will be the pressure at the bottom of the reservoir?
b. What will be the reading, h, on the mercury manometer on the left side?

Solution:

$$
\begin{aligned}
& F_{R}=\gamma_{H_{2} O} Z_{C} A \\
& \Rightarrow 30 N=\left(9800 \frac{N}{m^{3}}\right) Z_{C}\left(\frac{\pi}{4}(0.04 m)^{2}\right) \\
& \Rightarrow Z_{C}=2.44 m
\end{aligned}
$$

$$
\begin{aligned}
l & =r \sin 50^{\circ}=0.02 m \times \sin 50^{\circ}=0.015 m \\
H & =Z_{C}+l+0.03 m=2.44 m+0.015 m+0.03 m=2.49 m
\end{aligned}
$$

Class 05: Hydrostatic Force on a Submerged Surface

(a) Pressure at the bottom:

$$
P_{1}=\gamma_{\mathrm{H}_{2} \mathrm{O}} H=9800 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \times(2.49 \mathrm{~m})=24,402 \mathrm{~Pa}=24.402 \mathrm{kPa}
$$

(b) Use Manometry:

$$
\begin{aligned}
& \gamma_{\mathrm{Hg}}=13.55 \bullet \gamma_{\mathrm{H}_{2} \mathrm{O}}=132,790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \\
& P_{1}+\gamma_{\mathrm{H}_{2} \mathrm{O}} \times(\Delta z=0.02 \mathrm{~m})-\gamma_{\mathrm{Hg}} \times h=P_{0} \\
& h=\frac{P_{1}+\gamma_{\mathrm{H}_{2} \mathrm{O}} \times(\Delta z=0.02 \mathrm{~m})}{132,790 \frac{\mathrm{~N}}{\mathrm{~m}^{3}}} \\
& \Rightarrow h=0.19 \mathrm{~m}
\end{aligned}
$$

