MECH-322 Studly MASS CO ${ }^{3}$ MU M

Dr. K. J. Berry

CONTINUITY

- Mass Conservation: "TIME RATE OF CHANGE OF SYSTEM MASS = 0"

$\frac{D M}{D t}$	$=0 ;$
SSTTEM	
M	$=$ system MASS $=\operatorname{DENSITY}(\mathrm{kg} / \mathrm{m} 3) \times \operatorname{VOLUME}(\mathrm{m} 3)$
$M_{\text {sys }}$	$=\int_{\text {sys }} \rho d \forall$

- REYNOLDS TRANSPORT THM.

$$
\frac{D M}{D t}_{\text {SYSTEM }} \equiv 0=\frac{\partial}{\partial t}\left[\int_{C V}\left(\rho\left[\frac{k g}{v o l}\right]\right) d \forall\right]+\int_{C S} \rho(\vec{V} \bullet \hat{n}) d A
$$

- Constant Properties \& Flow
$\dot{m}=\rho A V_{n}=\rho Q:$ MASS FLOW RATE (mass/time)
$V_{n}=$ NORMAL VELOCITY @ SURFACE

$$
0=\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{o u t}-\sum \dot{m}_{i n}
$$

- An aquarium is being emptying at a steady rate with a small pump. The water is pumped to a 12" diameter cylinder bucket, and its depth is increasing at a rate of 4"/min.
- Find the rate at which the aquarium water level is dropping if the aquarium measures 24" (wide) x 36" (long) x 18" (high).

MASS CONSERVATION
$\frac{\partial}{\partial t}\left[\int_{c v}^{\rho \forall=\rho d \forall A h(t)} \rho \forall \dot{m}_{\text {out }}-\sum \dot{m}_{\text {in }}=0\right.$
Aquarium
$\frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{o u t}=0$
$\rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}+\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=0 ;(1)$
BUCKET
$\frac{\partial}{\partial t} \int_{c v} \rho d \forall-\left(\sum \dot{m}_{i n}\right)_{B U}=0$
$\rho \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U}-\left(\sum \dot{m}_{i n}\right)_{B U}=0 ;(2)$

EQUILIBIRUM

$$
\begin{aligned}
& \rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}+\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=0 ;(1) \\
& \left(\sum \dot{m}_{\text {out }}\right)_{A Q}=\left(\sum \dot{m}_{\text {in }}\right)_{B U}=\rho \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U} \\
& \not \rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}+\varnothing \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U}=0 \rightarrow \text { PARAMETRIC FUNCTION } \\
& A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}=-\frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U}=-\frac{\pi\left(\frac{1}{12}\right)^{2}}{4} f t^{2} \frac{4 / 12}{m} \frac{1 m}{60 s} f t=-3 \times 10^{-5} \frac{f t^{3}}{s} \\
& A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}=\text { Rate of AQ water level drop } \\
& \text { Area } \\
& A Q=24 " x 366^{\prime \prime} i^{2} \\
& \frac{d V o l(t)_{A Q}}{d t}=\text { Area } A Q \frac{d h}{d t}
\end{aligned}
$$

$$
\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=\left(\sum \dot{m}_{\text {in }}\right)_{B U}=\rho \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U}
$$

