$$
E=m c^{2}
$$

- An aquarium is being emptying at a steady rate with a small pump. The water is pumped to a 12" diameter cylinder bucket, and its depth is increasing at a rate of $: \frac{d h}{d t}\left[\frac{i n}{s}\right]=3.6 \times 10^{-3}[] t^{3}, t \rightarrow \mathrm{sec}$.
Find the expression at which the aquarium water level is dropping $\left(\frac{f t^{3}}{s}\right)$
Find the expression for change in depth vs time.
Aquarium is $24^{\prime \prime}$ wide, $36^{\prime \prime}$ long, and $18^{\prime \prime}$ high and is FULL.

UNITS

$$
\begin{aligned}
& \frac{d h}{d t}\left[\frac{i n}{s}\right]=3.6 \times 10^{-3}[] t[s]^{3} \\
& \frac{\text { in }}{s}=[] s^{3} \rightarrow[]=\frac{\frac{i n}{s}}{s^{3}}=\frac{i n}{s^{4}}
\end{aligned}
$$

$$
\frac{d h}{d t}\left[\frac{i n}{s}\right]=3.6 \times 10^{-3}\left[\frac{i n}{s^{4}}\right]\left[[s]^{3}\right.
$$

MASS CONTINUITY

$\frac{\partial}{\partial t}\left[\int_{c v}^{\rho \forall=\rho A h(t)} \rho d \forall\right]+\sum \dot{m}_{\text {out }}-\sum \dot{m}_{\text {in }}=0$
Aquarium

$$
\begin{aligned}
& \frac{\partial}{\partial t} \int_{c v} \rho d \forall+\sum \dot{m}_{\text {out }}=0 ;\left(\sum \dot{m}_{\text {in }}\right)_{A Q}=0 \\
& \rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}+\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=0 ;(1)
\end{aligned}
$$

BUCKET
$\frac{\partial}{\partial t} \int_{c v} \rho d \forall-\left(\sum \dot{m}_{\text {in }}\right)_{B U}=0 ;\left(\sum \dot{m}_{\text {out }}\right)_{B U}=0$
$\rho \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}\right)_{B U}-\left(\sum \dot{m}_{i n}\right)_{B U}=0 ;(2)$

EQUILIBIRUM
$\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=\left(\sum \dot{m}_{\text {in }}\right)_{B U}=\rho \frac{\pi D^{2}}{4}\left(\frac{d h}{d t}=3.6 \times 10^{-3}\left[\frac{i n^{4}}{s}\right] t^{3}\left[s^{3}\right]\right)_{B U}$

$$
\begin{gathered}
\left(\frac{d h}{d t}\left[\frac{i n}{s}\right]\right)_{B U C K E T}=3.6 x 10^{-3}\left[\frac{i n}{s^{4}}\right] t[s]^{3} \\
\rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}+\rho \frac{\pi D^{2}}{4}\left(\sum \dot{m}_{\text {out }}\right)_{A Q}=0 \\
\not \rho A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}=-\phi \frac{\pi D_{B U}^{2}}{4}\left(3.6 x 10^{-3}\left[\frac{i n}{s^{4}}\right] t[s]^{3}\right) \\
\underbrace{A_{A Q}\left[f t^{2}\right]\left(\frac{d h}{d t}\left[\frac{f t}{s}\right]\right)_{A Q}^{\left[\frac{i n}{s}\right]}}_{\frac{f^{3}}{s}}=-\underbrace{\frac{\pi D_{B U}^{2}}{4}\left[f t^{2}\right]\left(3.6 x 10^{-3}\left[\frac{i n}{s^{4}}\right] t[s]^{3}\right)}_{\left[\frac{f t^{3}}{s}\right]} \cdot\left[\frac{1 f t}{12 i n}\right] \\
Q_{A Q}\left[\frac{f t^{3}}{s}\right]=-0.2356 x 10^{-3}\left[\frac{\left.f t^{3}\right]}{\left.s^{4}\right] t^{3}\left[s^{3}\right]}\right.
\end{gathered}
$$

AQUARIUM HEIGHT VS TIME

$$
\begin{aligned}
& A_{A Q}\left(\frac{d h}{d t}\right)_{A Q}=-\frac{\pi D_{B U}^{2}}{4}\left(3.6 \times 10^{-3}\left[\frac{i n}{s^{4}}\right] t[s]^{3}\right) \\
& \int_{1^{\prime \prime}}^{h(t)} d h=C \int_{0}^{t} t^{3} d t, C=\frac{\frac{\pi D_{B U}^{2}}{4}\left[i i^{2}\right] \cdot 3.6 \times 10^{-3}\left[\frac{i n}{s^{4}}\right.}{A_{A Q}\left[i n^{2}\right]}\left[\frac{i n}{s^{4}}\right] \\
& h(t)_{A Q}[i n]=18^{\prime \prime}[i n]-\frac{C\left[\frac{i n}{s^{4}}\right] t^{4}\left[s^{4}\right]}{4}[i n]
\end{aligned}
$$

Continuity Study Aid

