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MECH-420 Equations Sheet 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1. You may use equation on each exam.
2. Do not write on any sheet of equation sheet.
3. After printing, sign below and submit with each exam.
4. It will be returned after each exam.
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Any problem without correct units 
receive 0 points. 
Quantity Name 

Symbol 
SI 
Units 

English Units Conversion 

Force Newton (N) 

Pressure Pascal (Pa) 

Energy Joules (J) 

Power Watts (W)        Hp 

Thermal 
Conductivity 

k 

Specific Heat Cp 

Density 

Mass m kg slugs 

13 

2

m kg
s
−

2

N
m 2

flb
ft

flb

21 0.020886 flb
PA

ft
=

1 0.224809 fN lb=

N m− Btu 1 0.000948J Btu=

http://www.digitaldutch.com/unitconverter/energy.htm 

sec
J

W
m K−

/Btu hr
ft R−

1 0.57779W Btu
m K hr ft R

=
− − −

J
kg K−

1 7700J Btu
kg K slugs R

=
− −

3

kg
m 3

slugs
ft

Btu
slugs R−

3 31 0.001939kg slugs
m ft

=ρ

1 32.2 14.6mslug lb kg= =

1 1 0.00134
sec
J W Hp= =
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Heat Diffusion Equation: 1D, Transient,  Constant Properties (Homogeneous) 

  

 

 

 

 

 

 

 

Thermal Resistance: 1D Heat Transfer, Steady State, No Internal Heat Generation, Homogenous 
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Solution of 1st Order ODE: 
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Temperature distribution and heat loss  for fins on uniform cross section 

Case  Tip Conditions Temperature Distribution 
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Fin Performance 
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Transient Conduction (LUMPED): T(time) Only 
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Spatial Effects (Bi, > 0.1, Fo > 0.2) 
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Total Energy 
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SEMI-INFINITE SOLID 
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EXTERNAL FORCED CONVECTION 
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INTERNAL FLOW---HYDRODYNAMICS 
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INTERNAL FLOW—HEAT TRANSFER 
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INTERNAL FLOW—HEAT TRANSFER 
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SUMMARY – SPECIAL CASE: INTERNAL FLOW/EXTERNAL CONVECTION 
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HEAT EXCHANGERS 

Overall Heat Transfer Coefficient & Fouling Factors 

 

 

 

 

 

 

 

 

 

 

 An essential part of any heat 
exchanger analysis is determination of 
the overall heat transfer coefficient. 

 During normal operations, HOT and 
COLD surfaces are often subject to 
fouling by fouling impurities, rust 
formation, or their reactions between 
the fluid and the wall material.  
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SPECIAL CASE 

THERMAL CAPACITYC mcp≡ =   
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h fgq m h= •   

NTU METHOD

 CCOONNDDEENNSSAATTIIOONN  occurs at a constant 
temperature (i.e. TTHHEERRMMOODDYYNNAAMMIICCSS) 

 Implies a VERY LARGE THERMAL CAPACITY 
OF HHOOTT  FLUID (Ch). 

 EEVVAAPPOORRAATTIIOONN  occurs at a constant 
temperature (i.e. THERMODYNAMICS) 

 Implies a VVEERRYY  LLAARRGGEE  THERMAL CAPACITY 
OF CCOOLLDD  FLUID (Cc). 
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NTU RELATIONSHIPS
(sometimes easier)
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NET RADIATION 
EXCHANGE

Consider a small blackbody object at Temperature Ts 
and completely enclosed and exchanging radiation with 
the surroundings at Temperature Tsur < Ts as shown below.

6 6/10/2020

The ‘net’ radiation exchange between the 
blackbody and the surrounding enclosure is:

" 4 4
2 2 4 ( )rad s surr

W Wq T T
m m K

σ  = −  − 



REAL SURFACE RESISTANCE
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Every “real” surface has a resistance to thermal radiation 
emission.  This resistance and net radiation heat transfer 
exchange can be expressed by:

1
b

net
E Jq

A
ε

ε

−
=

−

Where bE J− is the driving surface potential and where J is known as the surface Radiosity (W/m2) and 

1
A
ε

ε
−

is the surface resistance to radiation emission. Note for a blackbody 1ε =  , and the resistance goes 

to zero.  



6/10/2020

10
To complete the exchange analysis we need to consider a radiation energy 
balance for each surface shown above to the right. Due to the distance 
between surface and the RELATIVE SHAPE of each surface, not all the energy 
that is emitted by surface “1”, say will reach surface “2”. 

1

i ijA F

This distance and geometry differences result in a “surface” resistance for surface “i” of the form: 
1

i ijA F
. Where Fij (shape/view factor) is the fraction of energy that leaves surface “I”, and strikes surface “j” 
directly.  

“n” Surfaces Exchange

So a radiation 
balance of an 
arbitrary surface “I” 
and exchanging 
radiation with “n” 
other surfaces 
(including itself) 
becomes:

1

1

1

11

1 1

;applied to every surface1 1

and once J's are known:

q 1 1

n
i jbi i

i j

i iji i

n
bi j

i
j

i ij

J JE J

A FA

E JJ J

A F A

ε
ε

ε
ε

=

=

−−
=

−

−−
= =

−

∑

∑



Radiation Balance – 2 Surface Problem
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1 1 1 2
1

1

1 121 1

2 2 2 1
2

2

2 212 2

1 2

1 2

1: 1 1

2 : 1 1

Two equations and two unknowns for J  and J .
Assuming T and T  are known.

b

b

E J J Jq

A FA
E J J Jq

A FA

ε
ε

ε
ε

− −
= =

−

− −
= =

−



THREE REAL SURFACES
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Consider two “real” surface that only exchange 
radiation with each other. The net radiation from each 
surface and the next exchange between each 
surface can be expressed as:

1 1
1

1

1 1

2 2
2

2

2 2

1 2
4

;net radiation to/from surface 11

;net radiation to/from surface 21

b

b

E Jq

A
E Jq

A
q q
E T

ε
ε

ε
ε

σ

−
=

−

−
=

−

= −

=



SHAPE FACTORS
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SHAPE FACTORS--RECIPROCITY 

The shape factor AiFij is the fraction of energy that leaves surface “I” and strikes surface “j”. Of course this 
must be a reciprocal relationship, i.e.: 

1 12 2 21

In general for any two arbitrary surfaces

, 1 2
i ij j jiA F A F

Example for surfaces and
A F A F

=

=

  

Also, since the “F” represents a fraction of the total energy leaving a surface and since energy is conserved 
the following summation rule applies as: 

1

11 12

21 22

1;for every surface

for example for surface 1:
F +F =1;and
for surface 2, etc.
F +F =1

n

ij
j

F
=

=∑

  



INSULATED SURFACES 
AND SURFACES WITH 
LARGE AREAS

14

For insulated surfaces (re-re-radiating), 
this behaves “like” a blackbody and as 
such the surface resistance go to zero 
and Eb=J (q=0). 

Likewise for “large” areas  (i.e. LARGE 
ROOM), the surface resistance 
approach zero and once again the 
reduction in the thermal circuit 
becomes Eb=J (q=0). For example, 
consider the thermal circuit for the 
following 3-surface problem with one 
insulated surface.

6/10/2020

1 2

1 2

Surface "r" Balance

01 1
r r

r r r r

J J J J

A F A F

− −
+ =



View Factors Standard Surfaces15
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