MECH-420 with Dr. Berry has pushed me to limits I did not know I had. But I can say with 100% certainty I am a better student and will be a better engineer as a direct result of it. Taking this course with Dr. Berry was a blessing. You will work hard in this course, but you will MASTER the concept as they apply to the real world. MECH-420 Heat Transfer

UNIT STUDY AIDS

KNOWLEDGE, YOU SEEK, DO YOU? DO OR DO NOT. THERE IS NO TRY

HOMEWORK FOLLOW THE PATH

1. The comet Centaur is headed straight for a BLACK HOLE emitting thermal radiation causing the temperature of comet to be measured as:

 $T(x, y, z, t) = (2xt + 12y^2x^2zt^{-1/2} - 34y^3xzt^3) K$

Where "x,y,"z are in meters, and "t" is in seconds.

- a. What are the units on the constants "2", "12", and "34".
- b. Determine the expression/relationship for the <u>Time</u> <u>Rate of Change of Temperature</u> $\frac{DT}{Dt}(K/s)$ for the

doomed comet Centaur and VERIFY the units on each term.

2

FOLLOW THE PATH

UNIT ANALYSIS

$$T(x, y, z, t) = (2xt + 12y^{2}x^{2}zt^{-1/2} - 34y^{3}xzt^{3})[K$$

$$[K] = 2[][m][s]$$

$$2[] = \frac{[K]}{[m][s]} = \frac{K}{m-s}$$

$$[K] = 12[][m^{5}][s]^{-1/2}$$

$$12[] = \frac{[K]}{[m^{5}][s]^{-1/2}} = \frac{K}{m^{5}-s^{-1/2}}$$

$$[K] = 34[][m^{5}][s^{3}]$$

$$34[] = \frac{[K]}{[m^{5}][s^{3}]} = \frac{K}{m^{5}-s^{3}}$$

FOLLOW THE PATH

3

TIME RATE OF CHANGE

$$T(x, y, z, t) = (2xt + 12y^{2}x^{2}zt^{-1/2} - 34y^{3}xzt^{3})[K]$$

$$\frac{DT}{Dt}\left[\frac{K}{s}\right] = 2x - 1/2 * 12 * y^{2}x^{2}zt^{-3/2} - 3 * 34 * y^{3}xzt^{2}$$

$$= \left[2x - 6y^{2}x^{2}t^{-3/2} - 102y^{3}xzt^{2}\right][?]$$
ENTER UNITS

$$= 2\left[\frac{K}{m-s}\right]x[m] - 6\left[\frac{K}{m^{5} - s^{-1/2}}\right]y^{2}x^{2}z[m^{5}]t^{-3/2}[s^{-3/2}]$$

$$-102\left[\frac{K}{m^{5} - s^{3}}\right]y^{3}xz[m^{5}]t^{2}[s^{2}]$$

As staff scientist for Cosmic Physics Inc. on the deep space research vessel **PROTIUS ONE**, your team after months of analysis has measured data and have determined the following equation for the Neutron Power Flux (Ψ) emitted within a Black Hole where "c" is the speed of light (m/s), "t" is time, and "J" is Joules:

$$\Psi(t)\left[\frac{J}{s}\right] = A[]^{3/2}t^{1/2} + B[]^{-1/3}t^{3} + C[]^{-2/3}t^{5/6} + D[]c[m/s]^{2}t^{-1/2}$$

- a. Determine the units of time varying constants A[], B[], C[], and D[].
- b. The time rate of change of the neutron power flux $(\frac{d\Psi}{dt})$ provides the power absorption rate of radiant energy. Determine $(\frac{d\Psi}{dt}\left[\frac{J/s}{s}\right])$ and show that units are **<u>CORRECT</u>**.