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Engineering Lab Report 
Elements
 Typed
 Scientific Objectives
 Experimental set-up and process
 Data Collection
 Data Reduction & Engineering Calculations

 COMPUTER GENERATED PLOTS

 Data Analysis and Reflection
 Information Learned Personally
 Professional Work Only
 Data W/O Analysis is Meaningless
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Some Basic Questions

 How do we determine the number of electrons
taking part in a fuel cell reaction such as in
hydrogen-oxygen fuel cell or methanol fuel
cell?

 What is the maximum voltage that a fuel cell
can produce?

 How much energy and enthalpy are produced in
hydrogen-oxygen fuel cell reaction?

 How fast the electrode reactions proceed? Do
they control any?
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Power Density = kW/m3 or kW/L

Energy Density = kWh/m3 or kJ/m3

Specific Power = W/kg
Mass
Power

Volume
Power

Volume
Energy
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 Avogadro Number N = 6.022×1023 electrons/mole
 1 electron has e = 1.602×10-19 Coulombs/electron.

 Faraday Constant:

 F=Ne=6.022×1023×1.602×10-19=96485 Coulombs/moles of electrons

 A little chemistry produces a lot of electricity

 Total Charge (Q=Coulombs) & CURRENT (Amp = C/sec):

1 Amp = 1 C/sec

1 A-sec = 1 C

1Volt = J/C

sec
JoulesWatts =

s
JW =
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2 2 2
1H O H O+ with ΔG 237.34kJ/mol (GIBBS FreeHEAT  Energy)
2

+ → = −

 The anode reaction in fuel cells is “direct oxidation”. “OXIDATION”
is a process where electrons are “removed” from a species. “i.e.
Negative Electrode”.

 The cathode reaction is “oxygen reduction”. ”REDUCTION” is a
process where electrons are “added” to a species. “i.e. Positive
Electrode”.

 Electrons flow from ANODE (-) to CATHODE (+) for fuel cells (opposite
for batteries).

 For H2/O2 fuel cell, overall reaction is (GIBSS=max work possible)

The product of this reaction is “water released” at the cathode or
anode depending on the type of the fuel cell.

 The open circuit voltage E0 at standard conditions of 25°C and 1
atmosphere pressure for the H2/O2 Fuel Cell is:

0
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 The Gibbs free energy of a system at any moment in time is defined as 
the enthalpy of the system minus the product of the temperature times 
the entropy of the system. G = H - TS. H is enthalpy, T is temperature, 
and S is entropy.

 Used to calculate the MAXIMUM of REVERSIBLE work that may be 
performed by a thermodynamic system at a constant temperature and 
pressure. BUT NOT THE SPEED OF REACTION.

 When using Gibbs free energy to determine the spontaneity of a 
process, we are only concerned with changes in “G”, rather than its 
absolute value.

 When the process occurs under standard conditions (25C/1Bar/1M), we 
calculate the GIBBS free energy using the Standard Free Energy of 
Formation, 
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 Although energy is released, 
‘activation energy’ must be 
supplied to get over the 
‘energy‘ hill’. (similar to 
mechanical inertia)

 If molecular energy is low, 
then chemical reactions will 
proceed slowly.

 Increase reaction rates:
 Use of Catalyst
 Raising Temperatures
 Increasing Electrode Area: 

Impacts rate at which 
“electrons” are removed on 
surface of electrode.

 Area is increased with highly 
porous electrodes
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 Combustion is an ‘EXOTHERMIC’ process 
(heat is released)

Heat (or enthalpy) of a reaction is the 
DIFFERENCE between the heats of formation 
of products and reactants: i.e.:
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 If 1 MOLE of Hydrogen is fully combusted with ½ MOLE of 
Oxygen and allowed to cool to 25C at 1 ATM, there will be 
only liquid remaining. 286 kJ/Mole of heat will be 
transferred. This is known as the hydrogen’s HIGHER
heating value.

 However, If 1 MOLE of Hydrogen is fully combusted with 
EXCESS Oxygen and allowed to cool to 25C at 1 ATM, 
product will be in form of vapor and unburned O2 and/or 
N2. 241 kJ/Mole of heat will be transferred. This is 
known as the hydrogen’s LOWER heating value.

 The difference is known as the HEAT of EVAPORATION
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286 241 45 /fgH kJ mol= − =



 Since there is NO COMBUSTION, Hydrogen 
heating value is used as a measure on energy 
input in a fuel cell.  This is the MAXIMUM 
amount of thermal energy that may be 
extracted. 

 But not all this thermal energy can be 
converted to ELECTRICAL ENERGY to do 
work. 

 The portion of the reaction enthalpy that can 
be converted  to electricity is constrained by 
the GIBBS free energy relationship. 
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 Consider Gibbs and Enthalpies and Entropies 
of formation at 25C.
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 Various efficiencies are defined related to fuel
cells.

 The thermodynamic fuel cell efficiency is
defined as the ratio of the electric energy
produced divided by the enthalpy change of
electrochemical reaction or energy released in
burning the fuel, i.e., the calorific value or the
enthalpy of formation:

 Higher heating value (HHV) or “enthalpy”
accounts for all energy available for combustion.

max

max

Work Output Desired
Work Input Required

Gibbs Free Energy(THEORETICAL) 237.34 / 83%@ 23
H2 Higher Heating Value 286.02 /

cell

cell
kJ mol C
kJ mol

η

η

=

−
= = = = =
− −

e f

f f

W Δg
Δh Δh
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Carnot efficiency does not 
apply to fuel cells because a 
fuel cell is NOT a heat 
engine; rather it is an 
electrochemical energy 
converter.

Recall from THERMODYNAMICS 
that a Carnot efficiency is the 
maximum efficiency that a heat 
engine may have operating 
between two temperatures.

1 L
c

H

T
Tη = −
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Theoretical Graph suggest that lower fuel cell 
operating temperatures are better; contrary to 
heat engines governed by Carnot Efficiency. 

 But actual fuel cell transport & chemical 
losses are nearly always “LESS” at higher 
temperatures. So in practice, fuel cell voltages 
are higher at higher temperatures. 

Waste heat from higher temperature fuel cells 
is more useful than from lower temperature 
fuel cells; thus higher thermal efficiency for 
Combined Heat and Power (CHP) applications .
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 Theoretically, the expected output voltage for the 
cell is 1.23V @ 25C.(Different for other 
temperatures)

 Why then does a fuel cells give lower voltage?
 This is caused by the “over-potential” of the 

reactions at the two electrodes; mass transport 
limitations, ohmic losses etc. Mostly caused by the 
oxygen reduction reaction (cathode) which is 
irreversible. 

 Four electrons arriving (or racing) at the cathode,
cannot be simultaneously be added in the oxygen 
ion orbit.
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 A combination of two half cells can be used to
build fuel cells.

 For example, we can have hydrogen and 
chlorine combine to make a fuel cell.

 H2 + Cl2 2 HCl

 Here for the half cells,
 H2 2H+ + 2 e−

 Cl2 + 2e− 2Cl−

 Voltage is 1.30 V, and the fuel cell gives 1.30 V.
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 Overall Reaction: 2 CH3OH + 3 O2 → 4 H2O + 2 CO2

 Reaction on the Anode:

 CH3OH + H2O → CO2 + 6 H+ + 6 e−

 Reaction on the Cathode:

 1.5 O2 + 6 H+ + 6 e−→ 3H2O

 Six electrons are involved in the half reaction and
 = - 698.2 kJ/mol

 Hence, reversible open circuit voltage is given by

V1.21
C964856

kJ/mol)10698.2(
6F

gΔE
30

f0 =
×

×−−
=

−
=

0
fgΔ
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Overall Reaction: C + O2 → CO2   (500-700°C operating T)

Reaction on the Anode:

Reaction on the Cathode:

O2 + 2CO2 + 4 e−→

Four electrons are involved in the half reaction and

= - 394.36 kJ/mol

Hence, reversible open circuit voltage is given by

−− +→+ 4e3CO2COC 2
2
3

−2
32CO

0
fgΔ
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4F
gΔE

30
f0 =

×
×−−

=
−

=
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Fuel Reaction n

Hydrogen 2 286.02 237.34 1.229 82.97

Methane 8 890.8 818.4 1.066 91.87

Propane 20 2221.1 2109.3 1.093 94.96

Hydrazine 4 622.4 602.4 1.560 96.77

Zinc 2 348.1 318.3 1.650 91.43

Sodium 1 326.8 300.7 3.120 92.00

fh−∆ fg−∆ 0E

2 2 22 2H O H O+ →

4 2 2 22 2CH O CO H O+ → +

3 8 2 2 25 3 4C H O CO H O+ → +

2 4 2 2 22N H O N H O+ → +

20.5Zn O ZnO+ →

2 24 2 4Na H O O NaOH+ + →

%f

f

g
h

∆
=

∆

About two million tons of hydrazine hydrate were used in foam 
blowing agents in 2015. Additionally, hydrazine is used in 
various rocket fuels and to prepare the gas precursors used in 
air bags. Hydrazine is used within both nuclear and 
conventional electrical power plants steam cycles as an 
OXYGEN SCAVENGER to control concentrations of dissolved 
oxygen in an effort to reduce corrosion.
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 The overall fuel cell reaction of hydrogen is the same as 
the combustion reaction of hydrogen, i.e.:

 Combustion is an exothermic process (heat is released), 
and the ENTHALPY of a chemical reaction is the difference 
between the heats of formation of products and reactants. 
So:

 The enthalpy of hydrogen combustion reaction is also 
called the “HYDROGEN HIGHER HEATING VALUE (HHV)”
 ALL ENERGY AVAILABLE FOR COMBUSTION

2 2 2
1
2

H O H O heat+ → +

2 2 2

2

2 2

1( ) ( ) ( ) 286 / ( ) Heat Released 
2

( ) 286.02 / @ 25
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f H O f H f O

f H O

f H f O

H h h h kJ mol negative

h kJ mol C

h h

∆ = − − = − →

= −

= = →
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maximum open circuit EMF (reversible voltage), and 
efficiency limit (ref. HHV—Higher Heating Value) for hydrogen 
fuel cells

,gf∆

Form of 
water 
product

Temp
°C

kJ/gmole

Max EMF
E0

V

Max 
Efficiency

Liquid 25 -237.34 1.23V 83%

Liquid 80 -228.2 1.18V 80%

Gas 100 -225.3 1.17V 79%

Gas 200 -220.4 1.14V 77%

Gas 400 -210.3 1.09V 74%

Gas 600 -199.6 1.04V 70%

Gas 800 -188.6 0.98V 66%

Gas 1000 -177.4 0.92V 62%

fg∆

cellη
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 The difference between HHV and LHV is the heat of evaporation at 
25C:i.e.:

 The conversion of a liquid to a vapor requires heat and is called 
the “latent heat of vaporization”. Implies that “more” energy 
can be recovered if the product water vapor is condensed to liquid 
form.

 For automotive combustion engines, using the LHV to compute 
efficiency is OK. But for LTPEM fuel cells we always use the HHV 
to compute efficiency
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 If 1 MOLE of Hydrogen is fully combusted with ½ MOLE of 
Oxygen and allowed to cool to 25C at 1 ATM, there will be only 
liquid remaining. 286 kJ/Mole of heat will be transferred. This 
is known as the Hydrogen’s HIGHER Heating Value (HHV).

 For H2/O2 fuel cell, overall reaction is (GIBSS=max work 
possible)
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 Real fuel cell efficiency must always be less than the reversible 
thermodynamic efficiency due to: 1) Voltage Losses and 2) Fuel 
Utilization Losses. Real efficiency can be calculated as:

Not all enthalpy contained in the  can be converted into useful work (

Lossess due to fuel cell irreversible kinetic effects
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The total fuel cell efficiency is still 40-
50% with all these factors, and is higher
than any fossil fuel power generation
by steam or gas turbine including micro
turbines.
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 For the hydrogen/oxygen fuel cell reaction, the NERNST
equation governs fuel cell performance as below:

 Only valid for gaseous products and reactants. 
 Higher reactant pressure, the cell potential (E) is higher (open 

circuit voltage or EMF). 
 If reactants are diluted, e.g. air, their partial pressure is 

proportional to their concentration and thus the cell 
potential is lower.
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Note: Partial 
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Water is 1.0.

12/2/2022K. J. Berry-Fuel Cell Chemistry 30

NOTE: PRESSURE IN ATM, CRITICAL



 Consider Air at 0.10 MPa.
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 Consider H2-O2 cell at 25C with H2 at 3 ATM, and “air” at 5 
ATM. Potential cell voltage is: 

 Not much of an increase for the extra work and expense of pressurizing the fuel 
cell stack! Unless cost is not a driving factor, but performance is important. 

 Consider 120 cell stack?
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 The theoretical cell potential changes with 
temperature:

Change of Enthalpy, Gibbs, and S for H2/O2 FC 
w/Temperature:

@ ? @ ?

1 Law
G= H

G H(

S

(

-

S )
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) th th th
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nF nF n
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F= =

−∆ ∆ ∆   = = − −   
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T(K)

298.15 -286.02 -237.34 -0.16328 1.230

333.15 -284.85 -231.63 -0.15975 1.200

353.15 -284.18 -228.42 -0.15791 1.184

373.15 -283.52 -225.24 -0.15617 1.167

( / )H kJ mol∆ ( / )G kJ mol∆ ( / )S kJ mol∆ ( )thE V

Although the theoretical voltage 
deceases with temperature, in general 
higher cell temperatures result in higher 
cell potential; because actual transport 
& chemical losses decrease with 
temperature. More in next chapter!
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 Enthalpy and Entropy can be expressed as:
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VALID:
T < 100C
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 Concentration gradients occur when a reactant 
is rapidly consumed at the electrode by the 
electrochemical reaction.  
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 For a fuel cell with reactants, 
but NO LOAD, will NOT 
generate any current. So we 
expect cell voltage to be at 
least to theoretical (i.e. 1.23).

 But this OPEN CIRCUIT 
VOLTAGE (OCV) is not, and is 
usually less than 1. Thus there 
are losses.

 When the circuit is closed, the 
voltage drops even more.

K. J. Berry-Week 2-3 Lecture 1 37

OPEN

CLOSED
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 The open circuit voltage is less than the theoretical value.
 There is rapid initial fall in voltage.
 The voltage then falls less slowly, and more linearly.
 There is sometimes a higher current density at which the

voltage falls rapidly.

PEMFC 
operating at 
70°C
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 The open circuit voltage is less than the theoretical value.
 The voltage then falls less slowly, and more linearly.
 At a higher current density, the voltage falls rapidly.

SOFC 
operating at 
800°C
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Difficulties in Reactions Reaching Reaction Sites
 Activation Losses

 Fuel Crossover & Internal Currents
 Internal Electrical and Ionic Resistance
 Electrochemical Reaction Kinetics
 Mass Transport or Concentration Losses
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 “SOME” voltage difference from 
equilibrium is needed to get the 
electrochemical reaction started. 
(similar to mechanical inertia)

 Activation Losses are caused by 
the slowness of the chemical 
reaction taking place at the 
surface of the electrodes. 

 A portion of actual generated 
voltage is lost in driving the 
chemical reaction that transfers 
the electrons to or from the 
electrodes.  This voltage drop is 
highly nonlinear, and temperature 
usually has a large influence on 
this type of overvoltage.
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 Based on experimental results, Tafel in 1905 correlated the
OVERVOLTAGE at the surface of an electrode as follows.

where the constant A is higher for a slower electrochemical
reaction, i0 is the exchange current density when the
overvoltage begins to move from zero. The faster the
chemical reaction, higher is the value of exchange current
density.

 Exchange current density is a measurement of the electrode
readiness to perform (current per surface area).

 McDougall and others have now provided a theoretical basis
for the Tafel equation and provided the formula for the
constant A as follows.

0
0);ln( i

i
V E V A i iη = ∆ = − = >
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where the constant α is called charge transfer coefficient. Its
value depends upon the reaction involved and the material of
the electrode.
For the hydrogen electrode, α ≈ 0.5 for most electrode
materials. For the oxygen electrode, α varies between 0.1 and
0.5.
Note that while increasing T will increase A linearly (and hence
the overvoltage), the effect of increase in T is significantly
higher on i0 (several order of magnitudes, thus reducing
overvoltage), and hence every attempt should be made to make
the exchange current density i0 as high as possible. The i0 also
depends upon several parameters in addition to the electrode
material.
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 Let us review i0: At the oxygen electrode of a PEMFC or PAFC, the
reaction taking place is

 At zero current density, there is no effective current generated,
but the chemical activity is taking place in forward and reverse
directions (continued flow of electrons from and to the electrode)
in equilibrium as below.

 Hence, larger i0 means that the surface of the electrode is more
active, and the current in one given direction is more likely to flow.
Since the electrons flow preferentially in one given direction (from
anode to cathode via outside circuit) in a fuel cell, the larger i0 will
reduce the overvoltage losses.

O2 + 4e− + 4 H+ → 2H2O

O2 + 4e− + 4 H+ ↔ 2H2O
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Let us consider an 
idealized situation of 
other losses in the fuel 
cell negligible except for 
the activation 
overvoltage.  In that 
case, the voltage 
generated is the ideal 
EMF (E minus activation 
overvoltage) and is 
shown here.
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 Tafel equation

 This equation indicates that ∆V = E − V = η = overvoltage is
needed to cause the current flow i to or from an electrode
and thus it is a measure of the thermodynamic
irreversibility of the electrode reaction. By recasting in
terms of I, we get

 This equation is called the Butler-Vollmer equation. It
shows a small change in η = ∆V can cause a large change in
the current flow i. For a PEMFC, E = 1.23 volts, A = 0.06
volts and i0 = 0.04 mA/cm2. The current flowing through a
cell can be calculated by using this equation.
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 The smaller is exchange current density i0, the
larger is the voltage drop.

 For larger values of i0 such as 100 mA/cm2, there is
no voltage drop up to the current density i ≤ 100
mA/cm2.

 The impact of i0 is much more significant as the
current density i increases.

 At the low current densities, there is a sharp drop
in voltage for the PEM fuel cell.

 The exchange current density i0 is dependent upon
the catalyst used on carbon electrodes, and the
surface smoothness or roughness of the electrodes.

12/2/2022



K. J. Berry-Week 2-3 Lecture 1 49

The exchange current density i0 is dependent upon
the catalyst used on carbon electrodes, and the
surface smoothness or roughness of the electrodes.
For example, the following table summarizes the
value of i0 for various catalysts on the smooth
hydrogen electrode of a PEMFC or PAFC.

Metal i0, A/cm2 
Pb   2.5 ×10−13 
Zn 3 × 10−11 
Ag 4 × 10−7 
Ni 6 × 10−6 
Pt 5 × 10−4 
Pd 4 × 10−3 

 

12/2/2022

0.75

0 0

Exchange Current Density: Elevated Pressures

i i high

low

P
P

 
=  

 


		Metal

		i0, A/cm2



		Pb

		  2.5 (10(13



		Zn

		3 ( 10(11



		Ag

		4 ( 10(7



		Ni

		6 ( 10(6



		Pt

		5 ( 10(4



		Pd

		4 ( 10(3







K. J. Berry-Week 2-3 Lecture 1 50

 There is a great variation in i0 with different catalysts.

 Platinum has one of the highest values of i0.

 For an oxygen electrode, i0 = 10−8 A/cm2, a much lower value than that at the
hydrogen electrode (far worse effect than the lowest curve in Fig. 3.4).

 For real electrodes, the surface is rough, and the actual surface area is at
least 103 larger than that for the smooth surface area. For PEMFC, i0 = 0.1
mA/cm2 at cathode and 200 mA/cm2 at the anode.

 Since i0 is much larger on the anode side compared to the cathode side,
generally we neglect the overvoltage on the anode side in the PEMFC and
PAFC.

 In contrast, the anode overvoltage is not negligible for the Direct Methanol
Fuel Cell (DMFC), and the total activation overvoltage for this fuel cell is
given by:

Activation Voltage Drop ∆V = 
0 0

ln lnanode cathode
a c

i iA A
i i

   
+   
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As we discussed, increasing the exchange current density i0 will reduce
the activation overvoltage. The exchange current density i0 can be
increased as follows:

 Raise the cell operating temperature, in general.
 Use more effective catalyst such as platinum compared to silver,

which increases the number of catalyst sites for reaction.
 Increase the roughness of the electrode surfaces, which increases

the nominal surface area of the electrode several orders of
magnitude.

 Increase the reactant concentration such as flowing more
concentrated OXYGEN instead of air; similarly flow more
concentrated hydrogen in a reformed fuel. With increased
reactant concentration, the catalysts sites are more effectively
occupied by the reactants as well as also increases the reversible
open circuit voltage.

 Increase the system pressure, which increases the catalyst sites as
well as also increases the reversible open circuit voltage.
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 Thus the overvoltage irreversibility is the
most important irreversibility and a cause
for voltage drop:
 at the cathode for the H2/O2 fuel cell
 at the cathode and anode for the Direct Methanol

Fuel Cell
 less important at high temperatures and pressures
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Fuel Crossover and Internal currents.  
The electrolyte is supposed to pass only 
ions (H+, OH−, O=, etc.) and not fuel or 
electrons.  Generally a small amount of 
fuel diffuses and electron flows from 
the anode to the cathode side. This 
effect is particularly important for low 
temperature fuel cells. 
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 Fuel crossover refers to the fuel directly diffusing
from anode to cathode. This diffused fuel then
reacts with the oxygen on the cathode side without
generating any electricity and is thus wasted.

 Internal current refers to the electrons conducting
through the electrolyte from the anode to the
cathode side, and this current is then not available
for external electrical circuit. Generally, the
electrolyte material is chosen such that it allows ion
conduction and very small electron conduction.

 Both fuel crossover and internal currents are
essentially equivalent and have the identical effect
whether you lose one molecule of hydrogen fuel or
two electrons!
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The reduction in the voltage produced due to
fuel crossover and internal current (In) is taken
into account in the same manner as for the
overvoltage where the current density i of the
cell is replaced by i + in (slide 13).

 For a PEMFC, using typical values: E = 1.23 V, A 
= 0.06 V, i0 = 0.04 mA/cm2 and in = 3 mA/cm2, 
we obtain the following V-I curve.

0

ln ,ni i RTV E A A
i Fα

 +
= − = 
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Hydrogen crossover is a 
function of membrane 
permeability, membrane 
thickness, and hydrogen 
partial pressure, i.e. 
hydrogen concentration 
difference across the 
membrane as the main 
driving force. 

A very low OPEN CIRCUIT 
VOLTAGE (OCV) (i.e. no 
external current) well 
below 0.9 may indicate 
either a hydrogen leak or 
an electrical short.
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 Consider the H2/O2 fuel cell operating at STP with an open circuit: Surface 
area of the electrode (or electrolyte) = 10 cm2,hydrogen consumption 
(flow rate per cell) = 0.0034 cm3/sec. Determine the H2 crossover 
current.
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 Compute Voltage Reduction due to CROSSOVER 
Current: Assume

 PEMFC, using typical values: E = 1.23 V, A = 
0.06 V, i0 = 0.4 mA/cm2
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 For the H2/O2 Fuel Cell PER CELL
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 In general for real systems:
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2.

2

Consider a H2/O2 fuel cell stack of 300 plates and plate area of 100 cm
Determie the hydrogen mass flow rate as a function of the current density(A/cm ) assuming
a fuel utilization of 95%.
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Adopted From Frano Barbir
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 The losses in the voltage generated due to electrical resistance of
ion flow through the electrolyte is most important. The amount of
this voltage drop is proportional to current flow rate.

∆V = IR
 There are two currents through the electrolyte: the current (ion)

flow rate i and the internal current in both in mA/cm2

 The electrical resistance of electrodes and the cell interconnects
or bipolar plates is generally small. Here, we will neglect them
considering them as a second order of magnitude.

 Since we represent all losses in terms of the current density, we
represent ohmic losses also in terms of current density based on
the surface area of the “smooth” plate of the cell electrode/
electrolyte.

∆V = (i + in)r
where i is the current density in mA/cm2, in is the internal current
density in mA/cm2, and r is the area specific resistance (ASR) in
kΩ⋅cm2.

 The ‘OHMIC’ voltage loss is important in all types of the fuel cells,
but more important in SOFC due to high temperatures > 800C.
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 Choose the electrode material with the highest
possible electrical conductivity.

 Select good design and use of appropriate
materials for the bipolar plates or cell
interconnects.

 Make the electrolyte as thin as possible keeping
into consideration that it may support electrodes
and/or needs to be wide enough to allow a
circulating flow of electrolyte, particularly when
the electrolyte is in liquid form. It must be robust
enough to prevent any shorting of one electrode
to another through the electrolyte.
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Adopted From Frano Barbir
12/2/2022

i = external current density
i = current density loss due to fuel crossover and internal currents

i limiting current density prior to short circuit current (0 Volts)
loss

l =
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 The reaction concentration at the catalyst surface depends on 
the current density (mA/cm2). (i.e. The HIGHER the CURRENT 
DENSITY, the LOWER the surface Concentration)

 The surface concentration reaches zero when the rate of 
consumption becomes equal to the diffusion rate; in other words, 
the reactants are consumed at the same rate as it is reaching 
the surface. 

 Thus, the concentration of reactant and the catalyst surface is 
equal to zero. 

 The current density at which this happens is called the LIMITING 
CURRENT DENSITY.(cathode anode)

 A fuel cell can’t produce MORE THAN the limiting current 
because there are no more reactants at the catalyst surface. 
(Every fuel cell has different limiting value)

 In case of oxygen, its partial pressure will go down with consumption.  In 
the case of hydrogen, if there are other components present, its partial 
pressure will go down. If pure hydrogen flows along the anode, its 
pressure will go down due to pressure drop associated with the flow.
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 The losses in the cell voltage that we have discussed are
 Activation losses
 Losses due to fuel crossover and internal currents
 Ohmic losses
 Mass transport or concentration losses

 We have derived the expressions for the activation losses, ohmic losses and
mass transport losses, all of which depend upon the current density i. We
also mentioned that there is an internal current flowing through the
electrolyte from electrode-to-electrode, which is generally measured in the
open circuit voltage experiments. The total losses then are given by

 This equation is valid ONLY when i+iloss > i0. and when the limiting current
density is NOT exceeded, i.e., when i < iL.
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Causes of Voltage 
Drops

PEMFC SOFC Comments

• Activation • Most important
• Important at cathode, 

not at anode.  
• The larger the i0, 

smaller is this drop.

Not important • At high P, high T, high 
reactant concentration, this 
drop becomes small.

• With the change in load, 
the activation losses do not 
change instantly, but 
slowly. 

Fuel crossover/
Internal current

• Ohmic Losses • Important for the total 
operating range of i.

• More important 
for the total 
operating range 
of i.

• With the change in load, 
the ohmic loss affects the 
voltage drop immediately.

• Mass Transport 
and Concentration 
Change

• Extremely important 
when i approaches il.

• Extremely 
important when 
i approaches il.

• Extremely nonlinear.

• Ohmic and activation 
losses are about the 
same order of magni-
tude in operation.

• Most voltage 
drop is due to 
ohmic losses 
during the 
operation.
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Unsteady conditions (flooding/drying)
 Contaminants
 Crossover Leaks
 Aging (loss of catalyst surface, cross leaks, 

change in membrane properties)
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• The fundamental performance behavior of a fuel cell can be
explained by the going through the basic thermodynamics and
electrochemistry of the fuel cells.

• The Nernst equation provides the relationship between the open
circuit voltage and the operating partial pressure of the reactants
and products. Influence of all parameters associated with the
Nernst equation were discussed in details to explain the
performance behavior of fuel cells.

• The actual voltage obtained from a fuel cell with load is different
than the ideal voltage from the thermodynamics. This is due to
losses associated with the operation, fuel cell materials used, and
the design. These losses are: activation, fuel crossover and
internal current leakage, ohmic, and mass transport or
concentration losses. These losses were discussed in detail with
some explanation of physical phenomena.
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A 100 cm2 5 cell H2/O2 fuel cell stack operates at 0.5 A/cm2 and 0.0018 g/s. 
What is the maximum current A  that could be generated
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So stack’s operating point is not possible. A stack’s MAX 
current output is always determined by the H2 flow rate.
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 A given fuel cell operates at 150A and 0.55VDC with an
overall resistance of 3 milli ohms at 1.4 A/cm2 current
density. Find: a) Potential Loss, b) Total electrical work
produced in 2h, and c) Rate of ohmic heat dissipation from
the cell in W.
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Determine the fuel utilization efficiency for 
a 300 plate fuel cell stack with 120 A current 
output and a hydrogen flow rate through the 
stack of 0.5 g/s of hydrogen
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 A H2/O2 Fuel Cell polarization curve has the 
following parameters.

Determine the efficiency at 0.6V and 0.7V.
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Parameter Value

T 333K

P 101.3 kPa

io 0.002mA/cm2

R 0.21 Ohm-cm2

iL 2000mA/cm2

iLoss 1.2 mA/cm2



 The theoretical cell potential changes with 
temperature:

Change of Enthalpy, Gibbs, and S for H2/O2 FC 
w/Temperature:

@ ? @ ?
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373.15 -283.52 -225.24 -0.15617 1.167

( / )H kJ mol∆ ( / )G kJ mol∆ ( / )S kJ mol∆ ( )thE V

Although the theoretical voltage 
deceases with temperature, in general 
higher cell temperatures result in higher 
cell potential; because actual transport 
& chemical losses decrease with 
temperature. More in next chapter!
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 Enthalpy and Entropy can be expressed as:
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 Efficiency at 20% of nominal power
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Problem 3.2
Vcell 0.8 0.6 V

i 0.2 0.8 A/cm2
A 100 cm2

Solution

k 0.333333
V0 0.866667 V

Find:
a. Max power at what voltage
b. Cell voltage and current density at ½ max 

power
c. Efficiency @ max power
d. Efficiency at ½ max power

1 2
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2 1
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@1/ 2 ,need to find current given work

4
2

3 0.87 3 0.87 4 3
, 0.28365

2
3 0.87 6.8121 3.4038 2.2280

2
3 0.87 6.8121 3.4038 0.3819

2

i iw VI i i

i w
Max

b b ac
a

w
i w

i A

i A

= = − = − →

− • + =

− ± −

• + • − •
= =

• + −
= =

• − −
= =

Find:
a. Max power at what voltage
b. Cell voltage and current density at ½ max power
c. Efficiency @ max power
d. Efficiency at ½ max power

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 0.5 1 1.5 2 2.5 3

i

w

i V w EFF
0 0.866667 0 0.584795

0.2 0.8 0.16 0.539811
wmax/2 0.380761 0.739746 0.281667 0.499154

0.4 0.733333 0.293333 0.494827
0.6 0.666667 0.4 0.449843
0.8 0.6 0.48 0.404858
1 0.533333 0.533333 0.359874

1.2 0.466667 0.56 0.31489
wmax 1.3 0.433333 0.563333 0.292398

1.4 0.4 0.56 0.269906
1.6 0.333333 0.533333 0.224921
1.8 0.266667 0.48 0.179937
2 0.2 0.4 0.134953

2.2 0.133333 0.293333 0.089969
wmax/2 2.219239 0.12692 0.281667 0.085641

2.4 0.066667 0.16 0.044984

Note that work is quadratic and has two 
“i” values for ½ power
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Problem 3.3
i0ref 1.00E-10A/cm2
Tref 298.15K
Pref 101.3kPa
V 0.9V
ac 640cm2/mg
Lc 0.4mg/cm2
P 300kPa
T 333.15K
Ec 66kJ/mol
R 8.314J/molK
gama 0.75
alpha 1
F 96485

2 2

2

0.50

PER CELL

PE

0

R CE

0

0

LL

( , ) 1.482 0.000845 0.0000431 ln( )

( 298.15 , 300 /101.3) 1

LOW PRESSU

exp[ (1 )],

.200558

0.21 300 , 101,3

( 0.

RE

ref refcr
c c r rref

r

H O
th

H O

th

c

ref

P P
E T P T T

EP Ti i a L

P

E T K P V

i

P kPa P kPa
P RT T

L

γ
 

= − − = • = 
 

= − +

= = =

=

( )

0

0

0 ,

2

,

2

ln negelect crossover, mass transfer, and "ir" lossess

exp( ), 96

2.94 07
1.47 06

COMPUTE CURRENT DENSITY

485 , 8.314

4 / )
( 2.0 / )

@V =0.9V

ce

ce

ll T P

cell T P

c

ll

RT i

mg cm
i L mg

F i
F C Ji i F R

RT mol m

m
E
Ec

α
α

 
= − → 

 

= − − = =

=

=

−

= −

V E

V E
2

, ,
0

220.010359508 /

NOW VOLTAGE INCREASE WITH INCRASED CATALYST LOADING @ S

( (

ln ,

(

ame Cu

1.47 06

rrent Density

0.01035950

0.4 / ) 2 / )

1.200558

2 /

8
cell T P T P

cel

c

cl

cL mg c
ol K

i i

RT i
F

m L mg cm

i E
V

L mg

mA cm

α

−
=

 
−

=

=
= − = =

= =

=
 

V E E

V 2

0.946202

0.946

0

20

.90 0.04620

)

2

2

cell
VV

cel

cm

l
∆ = − =

=

What is cell voltage 
increase for increased 
cathode Pt loading from 
0.4 to 2.0mg/cm2?

Assume same current 
density.
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Parameter Value

io 0.003 A/cm2

0.5

Ri 0.015 Ohm-cm2

T 338K

P1 1 Bar

P2 6 Bar

α

a. Find cell voltage at 1 A/cm2 at 
1Bar and at 6Bar (Anode & 
Cathode)

,
0

lncell T P i
RT i

F iα
 

= − −  
 

V E iR

2 2 2

2

2 2

2

0.50

PER C 3ELL

0.50

PER CELL

5

( )
( , ) ln( )

( , ) 1.482 0.000845 0.0000431 ln(

In General

LOW PR

H S( )

URE

)

ESS

H abs H O

H

th

O

H

th
SL

h
H O

I E

O
t

D
T

nF nF
R T K P P

E T P
nF P

P
P

TT T
P

E P

→

∆
−=

= −

∆
+

+

−

0.75

0 0

Exchange Current Density: Elevated Pressures

i i high

low

P
P

 
=  

 

(@1 ) 0.708
(@ 6 ) 0.825

0.117

cell

cell

Bar
Bar

V

=
=

∆ =

V
V
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Problem 3.5
T 353.15K
P 1atm
i0 0.0012mA/cm2
alpha 1
VOC 0.975V
i 0

2 2

2

0.50

PER CELL

PER CEL

0

L

,
0

,

0

LOW PRESSURE

ln

  SO

( , ) 1.482 0.000845 0.0000431 ln( )

(

 AT O

353.15 , 1 )

CV:

ln

ex

18

p

6

(

1. 3

cell T P i

loss
OCV cell T P

loss OC

H O
th

H O

th

P P

RT i
F i

iRT
F i

i i

E T P
P

E T K P Atm

T T

α

α

 
= − −  

 

 
=

= − +

= = =

−  
 

= −

V E iR

V E

V( ),

2

2

), 96485 , 8.314

1.0 96485
0.0012 exp( (0.975 1.1836) )

8.314 353.15

1.1383  per cell

V cell T P

loss

F C JF R
RT mol mol K

C
mA J mol

Jcm C K
mol K

mAi
cm

α
− = =

−

•
= • − −

•
−

=

E

Find:
a) Theoretical cell voltage
b) When OCV=0.975V, find current density 

due to hydrogen crossover or due to 
internal currents.
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Problem 3.6

A 100 cm2

m_dot_H2 0.0018 g/s

F 96485 As/mol

M_H2 2.0159 g/mol

2

2 2

Determine limiting current density.
2 2 96845 0.018 /I 172.3

2.0159

I 172.3 1.72
100

L
H

L

Fm g s A
M

A A
A cm cm

• •
= = =

= =





• Fuel Cell STACK total voltage depends on the
number of cells in a stack. Voltage per cell is 0.6 –
0.7 volts.

• Cell current depends on the AREA (the size) of a cell
and is same for EACH CELL.

• Cell power density is power (VI) per unit volume of
the cell, W/Liter.

• Specific power is defined as power per unit mass,
W/kg.
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Input Data and Problem
Fuel cell plate area = 1 m × 1 m = 1 m2

Current density (operating point) = 0.4 A/cm2 (amps/cm2)
Voltage per cell = 0.7 V
How many cells do we need for 120 V?
How much is the total power generated?

Solution
No. of cell = 120 V / 0.7 V per cell = 171.4 or 172 cells
Total current produced = 0.4 A/cm2 × (100 cm)2 = 4000 A
Power produced = 0.7 V/cell × 172 cells × 4000 A

= 481.6 × 103 W = 481.6 kW
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 Fuel cell electrical potential is obtained 
by converting the “chemical free 
energy potential" of the (Reactants –
Products) to electric energy.

 This chemical potential is impacted by 
pressure, temperature, and can also be 
impacted by “CONCENTRATION” 
differences between Anode and 
Cathode, even with same chemical 
species, e.g. Biological Fuel Cells. 

 Galvanic Cells Video; CLICK HERE
 HOMEWORK-Read Chapter #2, Prob. 2,3,4,Quiz1-

10.
 https://video.search.yahoo.com/yhs/search?fr=yhs-

mozilla-002&hsimp=yhs-
002&hspart=mozilla&p=galvanic+cell#id=49&vid=9a029
69d155c40e55d91d6b23e554164&action=view
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