THERMAL RADIATION
MECH-420 Heat Transfer
Dr. K. J. Berry

THERMAL RADIATION

- We associate thermal RADIATION WITH THE RATE AT WHICH ENERGY IS EMITTED BY MATTER AS A RESULT OF ITS FINITE TEMPERATURE. Thermal radiation is emitted by all matters that surrounds you: by the room walls, by the ground, buildings, and even the atmosphere and the sun.

The MECHANISM OF EMISSION is related to energy released as a result of oscillations or translations of the many electrons that constitute matter. These oscillations are, in turn, sustained by the internal energy, and therefore the temperature, of the matter.

- Hence, we associate the emission of thermal radiation with thermally excited conditions within the matter.

Radiation may be viewed as the propagation of "electromagnetic waves" with a frequency of v and a wavelength of λ, where the properties are related by: $\lambda=\frac{c}{v}$, where " c " is the speed of light in the medium. For example, for a vacuum, $c=2.998 \times 10^{8} \mathrm{~m} / \mathrm{s}$. The complete electromagnetic spectrum is delineated below.

WAVE PROPAGATION

BLACKBODY RADIATION

- A "BLACKBODY" is an ideal surface with the following attributes:
- A blackbody absorbs all incident radiation, regardless of wavelength and direction.
- For a prescribed temperature and wavelength, no surface can emit more energy than a blackbody.
\checkmark Although the radiation emitted by a blackbody is a function of wavelength and temperature, it's independent of direction.

The total emissive power (radiation heat flux) of a blackbody over all wavelengths can be determined as:

$$
\begin{aligned}
E_{b}\left[\frac{W}{m^{2}}\right] & =\int_{0}^{\infty} E_{\lambda}(\lambda) d \lambda=\sigma T^{4}\left[K^{4}\right] \\
\sigma & =5.67 \times 10^{-8} \frac{W}{m^{2}-K^{4}} ; \text { Stefan-Boltmann Constant }
\end{aligned}
$$

Therefore, the total radiation heat transfer rate for a blackbody with area surface, As, and Temperature, Ts is:

$$
q[W]=A_{s} \sigma T_{s}^{4}
$$

NET RADIATION EXCHANGE

- Consider a small blackbody object at Temperature Ts and completely enclosed and exchanging radiation with the surroundings at Temperature Tsur < Ts as shown below.

The 'net' radiation exchange between the blackbody and the surrounding enclosure is:

$$
q_{\mathrm{rad}}^{\prime \prime}\left[\frac{W}{m^{2}}\right]=\sigma \frac{W}{m^{2}-K^{4}}\left(T_{s}^{4}-T_{s u r r}^{4}\right)
$$

EMISSION FROM REAL SURFACES

A blackbody is an ideal emitter in the sense that no surface can emit more radiation than a blackbody at the same temperature. A "real" surface has a resistance therefore will have a rdiative emissive power less than a blackbody and is designated as a surface property known as the surface "emissivity", \boldsymbol{E}

The surface emissivity may then be defined as the
 ratio of the radiation emitted by the surface to reduced heat is absorbed by the roof and transferred to the building below the radiation emitted by a blackbody at the same temperature.

The figure shows the comparison between a real surface and a blackbody or ideal surface (a), and the directional distribution comparison (b). Therefore, the emissive power of a 'real" surface is with area A_{s} and Temperature T_{s} is:

$$
E[W]=\varepsilon A_{s} \sigma T_{s}^{4}
$$

: Blackbody vs Real Surfaces

REAL SURFACE RESISTANCE

Every "real" surface has a resistance to thermal radiation emission. This resistance and net radiation heat transfer exchange can be expressed by:

$$
q_{\text {net }}=\frac{E_{b}-J}{\frac{1-\varepsilon}{\varepsilon A}}
$$

Where $E_{b}-J$ is the driving surface potential and where J is known as the surface Radiosity (W/m2) and
$\frac{1-\varepsilon}{\varepsilon A}$ is the surface resistance to radiation emission. Note for a blackbody $\varepsilon=1$, and the resistance goes to zero.

Radiation Balance - 2 Surface Problem

$$
1: q_{1}=\frac{E_{b 1}-J_{1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}=\frac{J_{1}-J_{2}}{\frac{1}{A_{1} F_{12}}}
$$

$$
2: q_{2}=\frac{E_{b 2}-J_{2}}{\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}=\frac{J_{2}-J_{1}}{\frac{1}{A_{2} F_{21}}}
$$

(a)

Tyo equations and two unknowns for J_{1} and J_{2}.
Assuming T_{1} and T_{2} are known.

"n" Surfaces Exchange

To complete the exchange analysis we need to consider a radiation energy balance for each surface shown above to the right. Due to the distance between surface and the RELATIVE SHAPE of each surface, not all the energy that is emitted by surface " 1 ", say will reach surface " 2 ".
This distance and geometry differences result in a "surface" resistance for surface " i " of the form: $\frac{1}{A_{i} F_{i j}}$
. Where F_{ij} (shape/view factor) is the fraction of energy that leaves surface " I ", and strikes surface " j " directly.

```
So a radiation balance of an arbitrary surface "I" and exchanging radiation with "n" other surfaces (including itself) becomes:
```


SHAPE FACTORS

SHAPE FACTORS--RECIPROCITY

The shape factor $\mathrm{A}_{\mathrm{i}} \mathrm{F}_{\mathrm{ij}} \mathrm{is}$ the fraction of energy that leaves surface " l " and strikes surface " j ". Of course this must be a reciprocal relationship, i.e.:

In general for any two arbitrary surfaces
$A_{i} F_{i j}=A_{j} F_{j i}$
Example, for surfaces 1 and 2
$A_{1} F_{12}=A_{2} F_{21}$
Also, since the " F " represents a fraction of the total energy leaving a surface and since energy is conserved the following summation rule applies as:
$\sum_{j=1}^{n} F_{i j}=1$; for every surface
for example for surface 1 :
$\mathrm{F}_{11}+\mathrm{F}_{12}=1$; and
for surface 2, etc.
$\mathrm{F}_{21}+\mathrm{F}_{22}=1$

- For insulated surfaces (re-re-radiating), this behaves "like" a blackbody and as such the surface resistance go to zero and $E b=J(q=0)$.
-Likewhise for "large" areas (i.e. LARGE ROOM), the surface resistance approach zero and once again the reduction in the thermal circuit pecomes $\mathrm{Eb}=\mathrm{J}(\mathrm{q}=0)$. For example, consider the thermal circuit for the following 3 -surface problem with one insulated surface.

$$
\begin{array}{|l|}
\text { Surface "r" Balance } \\
\frac{J_{r}-J_{1}}{\frac{1}{A_{r} F_{r 1}}}+\frac{J_{r}-J_{2}}{\frac{1}{A_{r} F_{r 2}}}=0 \\
\hline
\end{array}
$$

${ }_{14}$ View Factors Standard Surfaces

A small oven consists of a "cubical" box, with power supplied from the floor. The walls loose heat to the outside surroundings with wall $\mathrm{Temp}=400 \mathrm{~K}$.
A spherical object is placed in the center, $D=30 \mathrm{~mm}$.
Sometime after the sphere is placed in the oven, the sphere Temp (T1) $=420 \mathrm{~K}$.

Find:
a. View Factors, F12, F13, F21, F31, F23, F32
b.floor temperature,
c. Is it steady state?

> | Assumptions: |
| :--- |
| Surfaces are grey and diffuse; |
| Uniform irradition and radiosity, |
| All floor power goes to heater, no storage, |
| No Convection |

ANALYSIS

$$
\begin{aligned}
& \text { CONSERVATION } \\
& \sum_{i} F_{i j}=1 \\
& \text { surface } 2 \text { does not see itself, } \mathrm{i}=2 \\
& \mathrm{~F}_{21}+\mathrm{F} / 22+\mathrm{F}_{23}=1 \\
& F_{23}=1-\mathrm{F}_{21}=0.9529 \text {, and from RECIPROCITY } \\
& A_{3} F_{32}=A_{2} F_{23} \\
& F_{32}=\frac{A_{2} F_{23}}{A_{3}}=\frac{L^{2} \bullet 0.9529}{5 \bullet L^{2}}=0.19058 \\
& \text { Finally from Conservation } \\
& \mathrm{i}=3 \\
& \mathrm{~F}_{31}+\mathrm{F}_{32}+\mathrm{F}_{33}=1 \\
& \mathrm{~F}_{33}=1-\mathrm{F}_{31}-\mathrm{F}_{32}=1-0.0471-0.19058=0.76232 \\
& \text { (fraction of walls that see itself) }
\end{aligned}
$$

SURFACE ENERGY BALANCE

UNKNOWNS

3 Equations, 3 Unknowns
$\mathrm{J}_{1}, \mathrm{~J}_{2}, \mathrm{~J}_{3}$

$$
\begin{aligned}
0.00189\left[m^{2}\right]\left(E_{b 1}-J_{1}\right)\left[\frac{W}{m^{2}}\right] & =0.000471\left[m^{2}\right]\left(J_{1}-J_{2}\right)\left[\frac{W}{m^{2}}\right]+0.00236 m^{2}\left(J_{1}-J_{3}\right)\left[\frac{W}{m^{2}}\right] \\
0.0333\left[m^{2}\right]\left(E_{b 3}-J_{3}\right)\left[\frac{W}{m^{2}}\right] & =0.00236\left[m^{2}\right]\left(J_{3}-J_{1}\right)\left[\frac{W}{m^{2}}\right]+0.00953 m^{2}\left(J_{3}-J_{2}\right)\left[\frac{W}{m^{2}}\right] \\
400 W & =0.000471\left[m^{2}\right]\left(J_{2}-J_{1}\right)\left[\frac{W}{m^{2}}\right]+0.00953 m^{2}\left(J_{2}-J_{3}\right)\left[\frac{W}{m^{2}}\right]
\end{aligned}
$$

$$
\begin{aligned}
& \varepsilon_{1}=\varepsilon_{2}=\varepsilon_{3}=0.4 \\
& E \varepsilon_{11}=\sigma T_{1}^{4}=5.67 \times 10^{-8} \frac{\mathrm{~W}}{\mathrm{~m}^{2}-K^{4}} \bullet(420)^{4} K^{4}=1764 \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& E_{b 3}=\sigma T_{3}^{4}=1452 \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

SOLVING
$\mathrm{J}_{1}=1.24 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$\mathrm{~J}_{2}=5.28 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$
$\mathrm{~J}_{3}=1.29 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}$

MATRIX SOLUTION

$$
\begin{aligned}
& 0.000471\left[m^{2}\right]\left(J_{1}-J_{2}\right)\left[\frac{W}{m^{2}}\right]+0.00236 m^{2}\left(J_{1}-J_{3}\right)\left[\frac{W}{m^{2}}\right]=0.00189\left[m^{2}\right]\left(E_{b 1}-J_{1}\right)\left[\frac{W}{m^{2}}\right] \\
& 0.00236\left[m^{2}\right]\left(J_{3}-J_{1}\right)\left[\frac{W}{m^{2}}\right]+0.00953 m^{2}\left(J_{3}-J_{2}\right)\left[\frac{W}{m^{2}}\right]=0.0333\left[m^{2}\right]\left(E_{b 3}-J_{3}\right)\left[\frac{W}{m^{2}}\right] \\
& 0.000471\left[m^{2}\right]\left(J_{2}-J_{1}\right)\left[\frac{W}{m^{2}}\right]+0.00953 m^{2}\left(J_{2}-J_{3}\right)\left[\frac{W}{m^{2}}\right]=400 W
\end{aligned}
$$

$\frac{\left[\begin{array}{lll}a_{1} & a_{2} & a_{3} \\ b_{1} & b_{2} & b_{3} \\ c_{1} & c_{2} & c_{3}\end{array}\right]\left\{\left[\begin{array}{l}J_{1} \\ J_{2} \\ J_{3}\end{array}\right\}=\left\{\begin{array}{l}F_{1} \\ F_{2} \\ F_{3}\end{array}\right\}\right.}{\left[\begin{array}{l}c_{1}=-0.000471 \\ c_{2}=0.000471+0.00953 \\ c_{3}=-0.00953 \\ F_{2}=400\end{array}\right.}$
$a_{1}=0.000471+0.000236+0.00189$
$a_{2}=-0.000471$
$a_{3}=-0.00236$
$F_{1}=0.00189$
$b_{1}=-0.00236$
$b_{2}=-0.00953$
$b_{3}=0.00236+0.00953+0.0333$
$F_{2}=0.0333$

SOLVING

$$
\begin{aligned}
& \mathrm{J}_{1}=1.24 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& \mathrm{~J}_{2}=5.28 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& \mathrm{~J}_{3}=1.29 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}
\end{aligned}
$$

FLOOR TEMPERATURE

$$
\begin{aligned}
& i=2 \\
& \mathrm{q}_{i}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\frac{1}{A_{i} F_{i j}}}=\frac{E_{b_{i}}-J_{i}}{\frac{1-\varepsilon_{i}}{\varepsilon_{i} A_{i}}} \\
& E_{b 2}=J_{2}+q_{2} \frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}=\sigma T_{2}^{4} \\
& =5.28 \times 10^{4} \frac{\mathrm{~W}}{\mathrm{~m}^{2}}+400 \mathrm{~W} \frac{1-0.4}{0.4 \bullet 0.1^{2}}=1.128 \times 10^{5} \frac{\mathrm{~W}}{\mathrm{~m}^{2}} \\
& f_{2}=\left[\frac{E_{b 2}}{\sigma}\right]^{1 / 4}=1188 \mathrm{~K}
\end{aligned}
$$

NET RADIATION LEAVING SPHERE

RADIATION HEAT TRANSFER BETWEEN FLOOR-†o-WALLS

$$
\mathrm{q}_{i}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\frac{1}{A_{i} F_{i j}}}=\frac{E_{b_{i}}-J_{i}}{\frac{1-\varepsilon_{i}}{\varepsilon_{i} A_{i}}}
$$

$q_{23}=\frac{J_{2}-J_{3}}{\frac{1}{1} F_{2}}=\frac{\left(5.28 \times 10^{4}-1.29 \times 10^{4}\right) \frac{W}{m^{2}}}{\left.\frac{1}{(0.12} \cdot 0.9529\right) m^{2}}$

$$
\overline{\left(0.1^{2} \cdot 0.9529\right)\left[m^{2}\right]}
$$

$$
=0.009529\left[\mathrm{~m}^{2}\right] \cdot\left(5.28 \times 10^{4}-1.29 \times 10^{4}\right)\left[\frac{W}{m^{2}}\right]
$$

$$
=0.0380207 \times 10^{4} \mathrm{~W}
$$

$$
=380.2071 \mathrm{~W}=-q_{32}(\text { WALLS to FLOOR })
$$

RADIATION HEAT TRANSFER BETWEEN FLOOR-†o-SPHERE

$$
\begin{aligned}
& \mathrm{q}_{i}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\frac{1}{A_{i} F_{i j}}}=\frac{E_{b_{i}}-J_{i}}{\frac{1-\varepsilon_{i}}{\varepsilon_{i} A_{i}}} \\
& q_{21}=\frac{J_{2}-J_{1}}{\frac{1}{A_{2} F_{21}}}=\frac{(5.28-1.24) \times 10^{4}}{\frac{1}{0.1^{2} \bullet 0.0471}}=19.0284 \mathrm{~W}
\end{aligned}
$$

RADIATION HEAT TRANSFER BETWEEN WALL-†o-SPHERE

$$
\begin{aligned}
& \mathrm{q}_{i}=\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{1}=\frac{E_{b_{i}}-J_{i}}{\frac{1-\varepsilon_{i}}{A_{i} F_{i j}}} \\
& q_{31}=\frac{J_{3}-J_{1}}{\frac{1}{A_{3} F_{31}}}=\frac{(1.29-1.24) \times 10^{4}}{\frac{1}{5\left(0.1^{2}\right) \bullet 0.0471}}=1.1175 \mathrm{~W}=-q_{13}
\end{aligned}
$$

NET RADIATION LEAVING WALL

$$
\begin{aligned}
\mathrm{q}_{i} & =\sum_{j=1}^{n} \frac{J_{i}-J_{j}}{\frac{1}{A_{i} F_{i j}}}=\frac{E_{b_{i}}-J_{i}}{\frac{1-\varepsilon_{i}}{\varepsilon_{i} A_{i}}} \\
i & =3 \\
q_{3} & =\frac{E_{b_{3}}-J_{3}}{\frac{1-\varepsilon_{3}}{\varepsilon_{3} A_{3}}}=\frac{\left(1452-1.29 \times 10^{4}\right) \frac{W}{m^{2}}}{\frac{1-0.4}{0.4 \bullet 5 \bullet 0.1^{2}\left[m^{2}\right]}}=-381.6 \mathrm{~W}
\end{aligned}
$$

TOTAL RADIATION TO/FROM FLOOR

Total Radiation TO/FROM FLOOR

$$
\begin{aligned}
\mathrm{q}_{\text {floor }} & =q_{\text {floor } \rightarrow \text { walls }}+q_{\text {floor } \rightarrow \text { sphere }} \\
& =380.2071 W(\text { page } 21)+19.0284 W \text { (page } 22) \\
& =399.2355 \mathrm{~W} \rightarrow \text { SHOULD BE } 400 \mathrm{~W}
\end{aligned}
$$

Curved, solar absorber surface cured by use of infrared heater in a large room.

ANALYSIS

The system is viewed as 3 surface enclosure, with the third surface being the surrounding room, which behaves as a BLACKBODY. What is the net rate of heat transfer to the absorber surface.

Surface 3 - Large Room

$$
\begin{aligned}
& E_{b 1}=\sigma T_{1}^{4}=56,700 \mathrm{~W} / \mathrm{m}^{2} \\
& E_{b 2}=\sigma T_{2}^{4}=7348 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

$\mathrm{J}_{3}=E_{b 3}=\sigma T_{3}^{4}=459 \mathrm{~W} / \mathrm{m}^{2}$
NODAL BALANCE - 1
$q_{1}=\frac{E_{b 1}-J_{1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}=\frac{J_{1}-J_{2}}{\frac{1}{A_{1} F_{12}}}+\frac{J_{1}-J_{3}}{\frac{1}{A_{1} F_{13}}}$
NODAL BALANCE - 2
$\mathrm{q}_{2}=\frac{E_{b 2}-J_{2}}{\sqrt{\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}=\frac{J_{2}-J_{1}}{\frac{1}{A_{2} F_{21}}}+\frac{J_{2}-J_{3}}{\frac{1}{A_{2} F_{23}}}}$

SHAPE FACTORS

$\mathrm{F}_{12}=F_{12^{\prime}} \rightarrow A_{2}^{\prime}$ is shown as the rectangular base of the absorber surface
FIGURE 13.2, 13.4
$\mathrm{Y} / \mathrm{L}=10 / 1=10, \mathrm{X} / \mathrm{L}=1 / 1=1$
$\mathrm{F}_{12}=0.39$
F $F_{1}+F_{12}+F_{13}=1 \rightarrow F_{13}=1-F_{12}=0.61$
Radiation propagating from surface 2 to 3 must pass through htpethetical surface A_{2}^{\prime}.

$$
A_{2} F_{23}=A_{2}^{\prime} F_{23}^{\prime}
$$

By Symmetry: $F_{23}=F_{13}$

$F_{23}=\frac{A_{2}^{\prime}}{A_{2}} F_{23}^{\prime 3}=\frac{A_{2}^{\prime}}{A_{2}} F_{13}=\frac{10}{15} 0.61=0.41$

NODAL MATRIX SOLUTION

$$
\mathrm{q}_{1}=\frac{E_{b 1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}+\frac{J_{3}}{\frac{1}{A_{1} F_{13}}}=\frac{J_{1}-J_{2}}{\frac{1}{A_{1} F_{12}}}+\frac{J_{1}}{\frac{1}{A_{1} F_{13}}}+\frac{J_{1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}=J_{1}\left[\frac{1}{\frac{1}{A_{1} F_{12}}}+\frac{1}{\frac{1}{A_{1} F_{13}}}+\frac{1}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}\right]+J_{2}\left[\frac{-1}{\frac{1}{A_{1} F_{12}}}\right]
$$

NODAL BALANCE - 2

$$
\begin{aligned}
& \mathbf{q}_{2}=\frac{E_{b 2}}{\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}+\frac{J_{3}}{\frac{1}{A_{2} F_{23}}}=\frac{J_{2}-J_{1}}{\frac{1}{A_{2} F_{21}}}+\frac{J_{2}}{\frac{1}{A_{2} F_{23}}}+\frac{J_{2}}{\frac{1-\varepsilon_{2}}{\varepsilon_{2} A_{2}}}=J_{1}\left[\frac{-1}{\frac{1}{A_{2} F_{21}}}\right]+J_{2}\left[\frac{1}{\frac{1}{A_{2} F_{23}}}+\frac{1}{\frac{1}{A_{2} F_{23}} \frac{1}{\varepsilon_{2} A_{2}}}\right] \\
& {\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left\{\begin{array}{l}
J_{1} \\
J_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{E_{b 1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}} \frac{\frac{J_{3}}{A_{1} F_{13}}}{\frac{E_{b 2}}{\frac{1-\varepsilon_{2}}{\varepsilon_{2}}}+\frac{J_{3}}{\varepsilon_{2} A_{2}}} \frac{\frac{1}{A_{2} F_{23}}}{\}}
\end{array}\right\}}
\end{aligned}
$$

NODAL MATRIX SOLUTION

NODAL BALANCE - 1
$\mathrm{q}_{1}=J_{1}\left[\frac{1}{\frac{1}{A_{1} F_{12}}}+\frac{1}{\frac{1}{A_{1} F_{13}}}+\frac{1}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}\right]+J_{2}\left[\frac{-1}{\frac{1}{A_{1} F_{12}}}\right]=J_{1} a+J_{2} b$
NODAL BALANCE - 2

$$
\left[\begin{array}{ll}
a & b \\
c & d
\end{array}\right]\left\{\begin{array}{l}
J_{1} \\
J_{2}
\end{array}\right\}=\left\{\begin{array}{l}
F_{1} \\
F_{2}
\end{array}\right\}=\left\{\begin{array}{l}
\frac{E_{b 1}}{\frac{1-\varepsilon_{1}}{\varepsilon_{1} A_{1}}}+\frac{\frac{J_{3}}{A_{1} F_{13}}}{\frac{E_{b 2}}{1-\varepsilon_{2}}}+\frac{\frac{J_{3}}{1}}{\frac{\varepsilon_{2} A_{2}}{A_{2} F_{23}}}
\end{array}\right\}
$$

$$
\begin{aligned}
& J_{3}=459 \mathrm{~W} / \mathrm{m}^{2} \\
& J_{1}=51,541 \mathrm{~W} / \mathrm{m}^{2}, J_{2}=12,487 \mathrm{~W} / \mathrm{m}^{2}
\end{aligned}
$$

$$
\begin{aligned}
& E_{b 1}=\sigma T_{1}^{4}=56,700 W / m^{2} \\
& E_{b 2}=\sigma T_{2}^{4}=7348 W / m^{2}
\end{aligned}
$$

