

UNIT STUDY AID \& PARAMETRIC THOUGHT

Understanding units and unit conversion is the first primary skill for parametric engineering modeling!!!

\checkmark Be able to determine correct dimensional units for constants within SI and BKS measurement systems if given any arbitrary function.
\checkmark Considering the velocity stream of $\vec{V}(x, y)\left[\frac{m}{s}\right]=\left\{10.2[] x^{\frac{1}{3}}-20.4[] e^{-\frac{y[m]}{3[]}}\right\}\left[\frac{m}{s}\right]$, the chemical molar dispersion [moles/sec] is measured as:
$\psi(t, x, y)\left[\frac{\text { moles }}{s}\right]=3.5[] e^{-5[t[s]}+20.2[] x^{2}\left[m^{2}\right]-0.3[] y^{3}\left[m^{3}\right]$, where x and y are in meters.

What are the units [] in brackets for both

$$
\vec{V}\left[\frac{m}{s}\right], \psi\left[\frac{\text { moles }}{s}\right], \frac{\partial \psi}{d t}\left[\frac{\frac{\text { moles }}{s}}{s}=\frac{\text { moles }}{s^{2}}\right], \text { and, } \frac{\partial \psi}{d x}\left[\frac{\frac{\text { moles }}{s}}{m}=\frac{\text { moles }}{s-m}\right] ?
$$

SHOW THAT UNITS ARE CORRECT FOR EACH TERM

$\vec{V}(x, y)\left[\frac{m}{s}\right]=\left\{10.2[] x^{\frac{1}{3}}-20.4[] e^{-\frac{v[m]}{3[]}}\right\}\left[\frac{m}{S}\right]$
"10.2"
$\left[\frac{m}{S}\right]=[] m^{\frac{1}{3}} \rightarrow[]=\frac{\left[\frac{m}{s}\right]}{m^{\frac{1}{3}}}=\frac{m^{\frac{2}{3}}}{s}$
"20.4"
$\left[\frac{m}{s}\right]=[][$ unitless $] \rightarrow[]=\frac{m}{s}$
"3"
$\frac{y[m]}{3[]}=[$ unitless $] \rightarrow[]=m$
$\psi(t, x, y)\left[\frac{\text { moles }}{s}\right]=3.5[] e^{-5[t[s]}+20.2[] x^{2}\left[m^{2}\right]-0.3[] y^{3}\left[m^{3}\right]$
"3.5"

$$
\begin{aligned}
& \frac{\text { moles }}{s}=[][\text { unitless }] \rightarrow[]=\frac{\text { moles }}{s} \\
& " 5 "
\end{aligned}
$$

$[$ unitless $]=[] s \rightarrow[]=\frac{1}{s}$
"20.2"
$\frac{\text { moles }}{s}=[] m^{2} \rightarrow[]=\frac{\frac{\text { moles }}{s}}{m^{2}}=\frac{\text { moles }}{s-m^{2}}$
"0.3"

$$
\frac{\text { moles }}{s}=[] m^{3} \rightarrow[]=\frac{\frac{\text { moles }}{s}}{m^{3}}=\frac{\text { moles }}{s-m^{3}}
$$

$$
\begin{aligned}
\psi(t, x, y)\left[\frac{\text { moles }}{s}\right] & =3.5[] e^{-5[t[s]}+20.2[] x^{2}\left[m^{2}\right]-0.3[] y^{3}\left[m^{3}\right] \\
\frac{\partial \psi(t, x, y)}{\partial t}\left[\frac{\frac{\text { moles }}{s}}{s}=\frac{\text { moles }}{s^{2}}\right] & =\overbrace{\text { NEVER WRITE ANY NUMBER WITHOUT PROPER UNITS }}^{-3.5\left[\frac{\text { moles }}{s}\right] \bullet 5\left[\frac{1}{s}\right]} e^{\text {IT ISPORTANT TO CARRY UNITS WITH THESE NUMBERS }} \\
& =-(3.5 \bullet 5)\left[\frac{\text { moles }}{s^{2}}\right] e^{-5[1 / s][][s][s]}
\end{aligned}
$$

$$
\frac{\partial \psi(t, x, y)}{\partial x}\left[\frac{\frac{\text { moles }}{s}}{m}=\frac{\text { moles }}{s-m}\right]=2 \cdot 20.2\left[\frac{\text { moles }}{s-m^{2}}\right] x[\mathrm{~m}]
$$

$$
=\left\{2 \bullet 20.2\left[\frac{\text { moles }}{s-m^{\chi}}\right] x[\not \mu]\right\}\left[\frac{\text { moles }}{s-m}\right]
$$

As staff scientist for Cosmic Physics Inc. on the deep space research vessel PROTIUS ONE, your team after months of analysis has measured data and have determined the following equation for the Neutron Power Flux (Ψ) emitted within a Black Hole where " c " is the speed of light $(\mathrm{m} / \mathrm{s})$, " t " is time, and " J " is Joules:

$$
\Psi(t)\left[\frac{J}{s}\right]=A[]^{32} t^{12}+B[]^{13} t^{3}+C[]^{2 s} t^{56}+D[] c[m / s]^{2} t^{-12}
$$

a. Determine the units of time varying constants $A[], B[], C[]$, and $D[]$.
b. The time rate of change of the neutron power flux $\left(\frac{d \Psi}{d t}\right)$ provides the power absorption rate of radiant energy. Determine $\left(\frac{d \Psi}{d t}\left[\frac{J / s}{s}\right]\right)$ and show that units are CORRECT.
$\left[\frac{J}{s}\right]=A[]^{3 / 2}[s]^{1 / 2}$
$A[]^{3 / 2}=\frac{\frac{J}{s}}{s^{1 / 2}}=\frac{J}{s^{3 / 2}}$
$A[]=\left[\frac{J}{s^{3 / 2}}\right]^{2 / 3}=\frac{J^{2 / 3}}{s}$
$\left[\frac{J}{s}\right]=B[]^{-1 / 3}[s]^{3}$
$B[]^{-1 / 3}=\frac{\frac{J}{s}}{s^{3}}=\frac{J}{s^{4}}$
$\frac{J}{s}=C[]^{-2 / 3}[s]^{5 / 6}$
$C[]^{-2 / 3}=\frac{\frac{J}{s}}{s^{5 / 6}}=\frac{J}{s^{11 / 6}}$
$C[]=\left[\frac{J}{s^{11 / 6}}\right]^{-3 / 2}=J^{-3 / 2 / 23} s^{\frac{33}{12}}$

$$
\begin{aligned}
& {\left[\frac{J}{s}\right]=D[][\mathrm{m} / \mathrm{s}]^{2}[s]^{-12}} \\
& D[]=\frac{\frac{J}{s}}{[\mathrm{~m} / \mathrm{s}]^{2} s^{-12}}=\frac{J / m^{2}}{s^{-13}}
\end{aligned}
$$

Gradient
$\frac{d \Psi}{d t}\left[\frac{J / s}{s}\right]=1 / 2 A^{3 / 2} t^{-1 / 2}-3 B^{-1 / 3} t^{2}+5 / 6 C^{-2 / 3} t^{-1 / 6}-12 D c[m / s]^{2} t^{-13}$
UNITS
$\left[\frac{J / s}{s}\right]=A^{3 / 2}[s]^{-1 / 2}=\left[\frac{J^{2 / 3}}{s}\right]^{3 / 2} s^{-1 / 2}=\left[\frac{J / s}{s}\right]$
$A[]=\frac{J^{2 / 3}}{S}$
$\left[\frac{J / s}{s}\right]=B^{-1 / 3} t^{2}=\left[\frac{J^{-3}}{s^{12}}\right]^{-1 / 3} s^{2}=\left[\frac{J}{s^{4}}\right] s^{2}=\left[\frac{J / s}{s}\right]$
$B[]=\frac{J^{-3}}{S^{12}}$
$\frac{J / s}{s}=C^{-2 / 3} t^{-1 / 6}=\left[J^{-3 / 2} s^{\frac{33}{12}}\right]^{-2 / 3} s^{-1 / 6}=J S^{-72 / 36}=\left[\frac{J / s}{S}\right]$
$C[]=J^{-3 / 2} S^{\frac{33}{12}}$
$\left[\frac{J / s}{s}\right]=D c[m / s]^{2} t^{-13}=\left[\frac{J / m^{2}}{s^{-13}}\right][m / s]^{2} s^{-13}=\frac{J}{s^{-13} s^{13} s^{2}}=\left[\frac{J / s}{s}\right]$
$D[]=\frac{J / m^{2}}{S^{-9}}$

