MECH-322 Fluid Mechanics Viscous Flow Study Aid

Dr, K. J. Berry

Through this experience, I began to understand the fundamental concepts of the course, thanks to your focus upon the units of each problem. It sounds like a little thing. But is one that is a very important detail to double check the math through each problem. At times I was frustrated and felt as though I could not understand the material, but with persistence and trying to understand the big picture, I began to make much progress. I will remember this class for how it showed me I can learn a great deal in a short amount of time. I appreciate you providing the external pressure to unlock the better engineer in all of us students.

Former Student, Spring 2022

Calculation of head losses

Example - Problem \# 8.97: The pump shown in Figure below delivers a head of 250 ft to the water. Determine the power that the pump adds to the water. The difference in elevation of the two ponds is $200 f t$.

Solution: The viscous pipe flow equation with losses can be written as

$$
\begin{equation*}
\frac{p_{1}}{\gamma}+z_{1}+\frac{V_{1}^{2}}{2 g}+h_{p}=\frac{p_{2}}{\gamma}+z_{2}+\frac{V_{2}^{2}}{2 g}+h_{L} \tag{1}
\end{equation*}
$$

where $p_{1}=p_{2}=0 ; V_{1}=V_{2}=0 ; z_{1}=0 ; z_{2}=200 f t ; h_{p}=250 f t$.

Calculation of head losses

Thus (1) reduces to:

$$
\begin{align*}
& -h_{L}+h_{p}=z_{2} \\
& \Rightarrow-\left(f_{\text {guess }} \frac{L}{D} \stackrel{V^{2}}{2 g}+\sum_{i=1}^{n}\left(\boldsymbol{k}_{L \text { minor }}\right)_{i}\left(\frac{V^{2}}{2 g}\right)\right)+h_{p}=z_{2} \tag{2}
\end{align*}
$$

Now $\sum_{i=1}^{n}\left(k_{L \text { minior }}\right)_{i}\left(\frac{V^{2}}{2 g}\right)=(0.8+5.0+4 \times(1.5)+1.0)\left(\frac{V^{2}}{2 g}\right)=12.8\left(\frac{V^{2}}{2 g}\right)$
Therefo $^{-}-\left(\left[f_{\text {GUESS }} \frac{(500 \mathrm{ft})}{(0.75 \mathrm{ft})}+12.8\right] \frac{V^{2}}{2\left(32.2 \mathrm{ft} / \mathrm{s}^{2}\right)}\right)+250 \mathrm{ft}=200 \mathrm{ft}$

$$
\Rightarrow\left(667 f_{\text {GUESS }}+12.8\right) V^{2}=3220
$$

Friction Characteristic Equation \rightarrow
$\mathrm{V}\left(f_{\text {GUESS }}\right)=\left(\frac{3220}{667 f_{\text {GUESS }}+12.8}\right)^{1 / 2} \rightarrow$ Guess f: $0.01 \leq f_{\text {GUESS }} \leq 0.03$

Calculation of head losses

$$
\begin{align*}
\text { Now } V & =\left(\frac{3220}{667 f_{\text {GUESS }}+12.8}\right)^{1 / 2} \tag{3}\\
\operatorname{Re}_{D} & =\frac{\rho V D}{\mu}=\frac{\left(1.94 \mathrm{slug} / f t^{3}\right) V(0.75 \mathrm{ft})}{\left(2.34 \times 10^{-5} \mathrm{lb} \cdot \mathrm{~s} / f t^{2}\right)}=6.22 \times 10^{4} \bullet V \tag{4}
\end{align*}
$$

Use Moody's diagram -
Trial \& error method:
Assume $f_{1}=0.02 \rightarrow V=11.1 \mathrm{ft} / \mathrm{s} \rightarrow \mathrm{Re}_{D}=6.9 \times 10^{5} \rightarrow f_{\text {mooty }}=0.012 \neq 0.02$
Assume $f_{2}=0.012 \rightarrow V=12.4 \mathrm{ft} / \mathrm{s} \rightarrow \operatorname{Re}_{D}=7.7 \times 10^{5} \rightarrow f_{\text {moody }}=0.0121 \simeq 0.012$ Thus $V=12.4 \mathrm{ft} / \mathrm{s}$

Hence the power added to the water is

$$
\begin{aligned}
& \dot{W}_{S}=Q\left(\gamma h_{p}\right)=(V A)\left(\gamma h_{p}\right)=(12.4 \mathrm{ft} / \mathrm{s})\left(\pi / 4[0.75 \mathrm{ft}]^{2}\right)\left(62.4 \mathrm{lb} / \mathrm{ft}^{3}\right)(250 \mathrm{ft})=8.55 \times 10^{4} \frac{\mathrm{ft} \mathrm{lb}}{\mathrm{~s}} \\
& \Rightarrow \dot{W}_{S}=8.55 \times 10^{4} \frac{\mathrm{ft} . \mathrm{lb}}{s} \times \frac{1 \mathrm{hp}}{(550 \mathrm{ft} . \mathrm{lb} / \mathrm{s})}=155 \mathrm{hp}
\end{aligned}
$$

HALLAND EQUATION Good for Programming Calculator

$$
\begin{equation*}
V=\left(\frac{3220}{667 f_{\text {guess }}+12.8}\right)^{1 / 2} \tag{3}
\end{equation*}
$$

$$
\begin{equation*}
\operatorname{Re}_{D}=\frac{\rho V D}{\mu}=\frac{\left(1.94 s l u g / f t^{3}\right) V(0.75 f t)}{\left(2.34 \times 10^{-5} l b \cdot s / f t^{2}\right)}=6.22 \times 10^{4} V \tag{4}
\end{equation*}
$$

$$
\frac{1}{\sqrt{f}}=-1.8 \log _{10}\left(\left(\frac{\varepsilon / D}{3.7}\right)^{1.11}+\frac{6.9}{\operatorname{Re}}\right)
$$

HALLAND EQUATION

HAALLAND EQUATION														
	DENS	Visc	D			DENS	Visc	D			DENS	Visc	D	
e/D	slugs/ft3	$\mathrm{lb}-\mathrm{s} / \mathrm{ft2}$	ft	f (guess)	e/D	slugs/ft3	lb-s/ft2	ft	f (guess)	e/D	slugs/ft3	lb-s/ft2	ft	f (guess)
0	1.94	$2.34 \mathrm{E}-05$	0.75	0	0	1.94	$2.34 \mathrm{E}-05$	0.75	0.01	0	1.94	$2.34 \mathrm{E}-05$	0.75	1
f	V	Re	f (FALLAND)		f	V	Re	f (FALLAND)		f	V	Re	f (FALLAND)	
0	15.86	$9.862 \mathrm{E}+05$	0.0116		0.01	12.86	7.996E+05	0.0120		1	2.18	$1.353 \mathrm{E}+05$	0.0168	
0.0116	12.52	$7.784 \mathrm{E}+05$	0.0121		0.0120	12.43	$7.731 \mathrm{E}+05$	0.0121		0.0168	11.59	$7.206 \mathrm{E}+05$	0.0123	
0.0121	12.42	$7.724 \mathrm{E}+05$	0.0121		0.0121	12.42	$7.723 E+05$	0.0121		0.0123	12.39	$7.705 \mathrm{E}+05$	0.0121	
0.0121	12.42	$7.722 \mathrm{E}+05$	0.0121		0.0121	12.42	7.722E+05	0.0121		0.0121	12.42	$7.722 \mathrm{E}+05$	0.0121	
0.0121	12.42	$7.722 \mathrm{E}+05$	0.0121		0.0121	12.42	7.722E+05	0.0121		0.0121	12.42	7.722E+05	0.0121	

Calculation of head losses/pressure drop

- EXAMPLE: Water at $0.02 \mathrm{~m} 3 / \mathrm{s}$ flows through 350 m of horizontal cast iron pipe ($D=20.27$ cm). Determine the head loss and pressure drop? $\quad v=\frac{\mu}{\rho}=9.569 \times 10 \cdot \frac{m^{2}}{s}$
$V=\frac{Q}{A}=\frac{0.02 \mathrm{~m}^{\frac{m^{3}}{s}}}{0.0327 \mathrm{Tm}^{2}}=0.0 .2 \frac{\mathrm{~m}}{\mathrm{~s}} \rightarrow \mathrm{Re}=\frac{V D}{V}=1.31110^{5} \rightarrow$ TURBULENT Table 8.1
$\varepsilon=$ Relative Roughness $=0.026 \mathrm{~cm}$
$\frac{\varepsilon}{D}=\frac{0.026 \mathrm{~cm}}{20.27 \mathrm{~cm}}=0.0012$
Moody Diagram $\left(\operatorname{Re}, \frac{\varepsilon}{D}\right)$, $f=0.022$; (or Haaland Equation)
HEAD LOSS
$\mathrm{h}_{L}=\frac{f L}{D} \frac{V^{2}}{2 g}=\frac{0.022 \times 350}{0.2027} \frac{(0.62)^{2}}{2(9.81)}=0.744 \mathrm{~m}$ of water
PRESSURE DROP
$\Delta P=\gamma \mathrm{h}_{L}=9800 \frac{\mathrm{~N}}{\mathrm{~m}^{3}} \bullet 0.744 \mathrm{~m}=7,280 \frac{\mathrm{~N}}{\mathrm{~m}^{2}}$

